
Open Source Community Building

as

Licenciate

at the

Faculty of Economics and Social Science

of the University of Bern

submitted to

Prof. Dr. Thomas Myrach

Institute of Information Systems

by

Matthias Stürmer

from Pfäffikon ZH

in the 9th Semester

Matriculation Number: 00-114-256

Address:

Wabernstrasse 51

CH-3007 Bern

(phone: +41 31 371 80 87)

(e-mail: matthias@stuermer.ch)

Bern, 2005-03-02

Abstract Page 2

Abstract
Building an active and helpful community around an open source project is a com-

plex task for its leaders. Therefore investigations in this work are intended to define

the optimum starting position of an open source project and to identify recommend-

able promoting actions by project leaders to enlarge community size in a healthy

way. For this paper eight interviews with committed representatives of successful

open source projects have led to over 12 hours of conversation about community

building. Analysing the statements of these experienced community members ex-

posed helpful activities that led to the presently prospering communities of their pro-

jects. Summarizing the conclusions of this qualitative research a table with condi-

tions for successful open source project initialisation and a subject-level promotion

matrix of community building could be created. They include suggestions on how to

start a new open source project and how to improve and increase the community of

an already advanced open source project.

Zusammenfassung
Eine aktive und hilfreiche Community um ein Open Source Projekt zu bilden ist eine

anspruchsvolle Aufgabe für dessen Leiter. Deshalb ist es das Ziel dieser Arbeit her-

auszufinden, welches die optimalen Ausgangsbedingungen eines Open Source Pro-

jektes sind und welche Aktivitäten der Projektleiter erfahrungsgemäss zu einem

gesunden Wachstum der Community führen. Für diese Forschungsarbeit wurden acht

Interviews mit engagierten Vertretern von erfolgreichen Open Source Projekten

durchgeführt, die insgesamt zu über 12 Stunden Gespräch über den Aufbau einer

Community führten. Die Auswertung der Aussagen dieser erfahrenen Community-

Mitglieder zeigten, welches die erfolgreichen Eingriffe sind, die zu der aktuellen,

wirkungsvollen Community der Projekte geführt haben. Als Resultat dieser qualita-

tiven Forschungsarbeit ergab sich einerseits eine Tabelle mit den Voraussetzungen

für die erfolgreiche Initialisierung eines Open Source Projekts und andererseits eine

Themen-Ebenen Matrix, die die Förderung des Aufbaus einer Community beschreibt.

Die Darstellungen beinhalten Empfehlungen zum Start eines neuen Open Source

Projekts und zur Verbesserung und Vergrösserung der Community in einem bereits

fortgeschrittenen Projekt.

Abstract Page 3

Résumé
La création d’une communauté active et bénéfique pour un projet open source re-

présente pour leurs responsables un défi de taille. Les objectifs de ce travail de re-

cherche sont d’une part la définition des conditions initiales optimales d’un projet

open source et d’autre part l’élaboration des activités des responsables qui conduiront

de manière empirique à un bon développement de la communauté. Ce document ras-

semble les interviews de huit personnes actives dans différents projets open source

menés avec succès. En tout, ils représentent plus de 12 heures de conversation sur le

fonctionnement d’une communauté. L’évaluation des avis de ces personnes a montré

quelles sont les actions qui conduisent à la constitution de communautés actuelle-

ment efficaces. Pour conclure cette recherche qualitative, on est parvenu à créer un

ensemble de conditions permettant d’initialiser avec succès des projets open source

ainsi qu’une matrice au niveau du thème pour la promotion de la constitution d’une

communauté. Ces représentations comportent des recommandations permettant le

lancement d’un nouveau projet open source ainsi que l’amélioration et l’agrandisse-

ment de projets open source déjà existants.

Table of Contents Page 4

Table of Contents
ABSTRACT..2
ACKNOWLEDGEMENTS..8

1. INTRODUCTION..9
1.1. Research Issue...9

1.2. Goals...9

1.3. Methodology...10

1.4. Realization..11

1.4.1. Getting Started...11

1.4.2. Selecting Cases...11

1.4.3. Crafting Instruments and Protocols..11

1.4.4. Entering the Field...12

1.4.5. Analysing Data...12

1.4.6. Shaping Hypotheses...12

1.4.7. Enfolding Literature...12

1.4.8. Reaching Closure...13

1.5. Investigated Open Source Projects...13

2. THE OPEN SOURCE PROJECT...14
2.1. Software..15

2.1.1. Definition...15

2.1.2. Life Cycle...15

2.2. Contributors..17

2.2.1. Definition...17

2.2.2. Roles...18

2.2.2.1. Contributor..18

2.2.2.2. Developer..18

2.2.2.3. Leader...19

2.2.2.4. Core Developer...19

2.2.2.5. Project Owner...19

2.2.2.6. Initiator...19

2.2.3. Motivation..20

2.3. Community...20

2.3.1. Definition...20

Table of Contents Page 5

2.3.2. Collaboration Technologies...20

2.3.2.1. IRC..20

2.3.2.2. Mailing List..21

2.3.2.3. Wiki..21

2.3.2.4. Blog..21

2.3.2.5. Sprint..22

2.3.2.6. Revision Control Systems..22

2.3.2.7. API..23

2.3.3. Reasons for Community Building..23

2.3.4. Characteristics of Desired Communities..25

2.3.4.1. Productivity...25

2.3.4.2. Self-Motivation...26

2.3.4.3. Diversity...27

2.3.4.4. Correct Behaviour...28

2.3.4.5. Altruism..28

2.3.4.6. Perseverance...29

2.3.4.7. Common Vision..30

3. INITIALISATION OF OPEN SOURCE PROJECTS.............................31
3.1. Leadership Skills and Behaviours...31

3.1.1. Assertiveness..31

3.1.2. Commitment...32

3.1.3. Communicativeness...33

3.1.4. Experience..34

3.1.5. Helpfulness...35

3.1.6. Openness..36

3.1.6.1. Open to Join..36

3.1.6.2. Open to the Choice of Work...37

3.1.6.3. Open to Leave...37

3.1.6.4. Open to Communicate..37

3.1.6.5. Limits of Openness...38

3.1.7. Patience..38

3.1.8. Personality..39

3.1.9. Presence..39

3.1.10.Programming..40

Table of Contents Page 6

3.1.11.Responsibility...41

3.1.12.Visionary..42

3.2. Prerequisites of the Project...43

3.2.1. Programming Language...44

3.2.2. Open Source License..46

3.2.3. Great Initial Source Code...49

3.2.4. Public Demand...50

3.2.5. Degree of Novelty..52

3.2.6. Applicability...53

3.2.7. Level of Communication..54

4. PROMOTION OF COMMUNITY BUILDING..56
4.1. Modularity..57

4.1.1. Recruiting...57

4.1.2. Collaboration..59

4.1.3. Production..61

4.2. Documentation..62

4.2.1. Recruiting...62

4.2.2. Collaboration..64

4.2.3. Production..66

4.3. Release Management..67

4.3.1. Recruiting...68

4.3.2. Collaboration..69

4.3.3. Production..70

4.4. Collaboration Platform...72

4.4.1. Recruiting...72

4.4.2. Collaboration..73

4.4.3. Production..74

4.5. Physical Meetings...75

4.5.1. Recruiting...75

4.5.2. Collaboration..77

4.5.3. Production..79

4.6. Foundation..80

4.6.1. Recruiting...80

4.6.2. Collaboration..82

Table of Contents Page 7

4.6.3. Production..85

4.7. Internationalisation...86

4.7.1. Recruiting...86

4.7.2. Collaboration..87

4.7.3. Production..88

4.8. Recruiting Specific Subjects...89

4.8.1. Spreading the Word..89

4.8.2. Credit System...91

4.9. Collaboration Specific Subjects..92

4.9.1. Communication Channels..92

4.9.1.1. IRC..93

4.9.1.2. Mailing List..94

4.9.1.3. Blog..95

4.9.2. Community Structure...96

4.9.3. Task List...97

4.10. Production Specific Subjects..99

4.10.1.Code and Feature Quality...99

4.10.2.User Interface Design...100

4.10.3.Installation..101

5. CONCLUSIONS...103
5.1. Successful Initialisation..103

5.2. Subject-Level Promotion Matrix..105

5.3. Interpretations of Interview Responses...109

5.3.1. Demand Driven Actions...109

5.3.2. Dependence on the Progress of the Project..110

5.4. Do’s and Don’ts for OSP Leaders..111

5.5. Future Research and Closing Comment ..113

APPENDIX...114
LIST OF FIGURES...148
LIST OF TABLES...148
GLOSSARY..149
BIBLIOGRAPHY..150
DECLARATION OF DISCRETENESS...153

Acknowledgements Page 8

Acknowledgements
• Bernhard Bühlmann, Boris Kraft, Bertrand Delacrétaz, Guido Wesdorp, Michael

Wechner, Daniel Hinderink, Bård Farstad and Gregor Rothfuss for their time and

openness talking about their fascinating open source projects

• Ekkehard Stürmer for his essential English support and interesting conversations

about open source community building

• Prof. Thomas Myrach for his supportive supervision and motivation during the

writing of this paper

• Christian Laux for advices about licensing issues of open source projects

• Stefan Häfliger for interesting conversations about open source research

• Andreas Voss for his comments on the paper’s structure

• Michel Dufour for the French support and conversations about open source issues

• Florian Lüchinger for his helpful comments about citations and others

• Emanuel Indermühle for his inspiration building a community for the Vida project

• Anita Stürmer for the French support and her love and patience

Introduction Page 9

1. Introduction
The introduction describes the motivation, the goals and the methodology of this pa-

per and introduces the investigated open source projects and their representatives.

1.1. Research Issue
In recent time the influence of open source software in IT industry has become more

and more important. Existing open source projects have grown, new projects have

been founded and previously proprietary software has been released under open

source licenses. To quantify the success of such open source projects it has been pro-

posed, among others, to measure the size of the development communities, the activ-

ity inside the projects, the time for bug fixing and number of downloads.1 Such meas-

urements show that some of the major goals of all open source projects are to in-

crease community size, improve internal collaboration and to further develop the

software. To this end it is important to understand the inner functioning of such com-

munities around open source projects and identify their central topics of actions. Also

it is necessary to determine the optimum prerequisites for the successful start of new

open source projects.

1.2. Goals
The goal of this paper is to identify successful ways of how to initiate and promote

community building of open source projects. To this end, the actions of the project’s

key persons, the open source project leaders, will be analysed since they have the

largest experience and most influence on the community. First, the optimum initial

conditions for new open source projects are described. Then, for already running pro-

jects, common ways of leadership behaviour will be found that have raised the pro-

jects’ attractiveness and thus motivated voluntary contributors to join the community.

Also it will be investigated how collaboration among active community members can

be improved and how the outcome, the software in use, is further developed. Thus it

is the goal to outline best practices of how to successfully direct open source projects.

1 See Crowston et.al. (2004), p. 1

Introduction Page 10

1.3. Methodology
Since the promotion of community building has not been investigated much this pa-

per is mainly based on case study research. First, the scientific approach is outlined

describing the process of creating theory from case study research. Second, the pro-

cedure adopted in this writing is explained showing the application of case study

methodology to this particular investigation.

Elaborately describing the proceedings in qualitative research, Eisenhardt shows a

roadmap for building theories from case study research.2 Table 1 lists the 8 steps of

the proposed process:

Step Activity
1 Getting Started • Definition of research question

• Possibly a priori constructs
• Neither theory nor hypotheses

2 Selecting Cases • Specified population
• Theoretical, not random, sampling

3 Crafting
Instruments and
Protocols

• Multiple data collection methods
• Qualitative and quantitative data combined
• Multiple investigators

4 Entering the Field • Overlap data collection and analysis including field notes
• Flexible and opportunistic data collection methods

5 Analysing Data • Within-case analysis
• Cross-case pattern search using divergent techniques

6 Shaping
Hypotheses

• Iterative tabulation of evidence for each construct
• Replication, not sampling, logic across cases
• Search evidence for “why” behind relationships

7 Enfolding
Literature

• Comparison with conflicting literature
• Comparison with similar literature

8 Reaching Closure • Theoretical saturation when possible

Table 1: Process of Building Theory from Case Study Research3

This paper is intended to rely as closely as possible on the proposed process guiding

the way through a rather unstructured qualitative data collection and analysis.

2 See Eisenhardt (1989), p. 532

3 See Eisenhardt (1989), p. 533, Table 1

Introduction Page 11

1.4. Realization
The realization of this paper’s research followed the steps outlined above by Eisen-

hardt. The actions in all eight phases are described briefly in the following para-

graphs.

1.4.1. Getting Started
Initially literature about open source communities was studied with special emphasis

on the current state of the scientific research about community building in open

source projects. The following research question helped to focus on the topic of in-

terest: What actions attract professional developers and helpful community members

to participate in an open source project? Literature and previous personal experi-

ences with open source software gave a basic idea where major sources of data could

be expected.

1.4.2. Selecting Cases
All leaders of open source projects published under an Open Source Initiative (OSI)

approved software license were defined as case population. Following Eisenhardt no

random selection of investigated units was made. For accessibility reasons a conveni-

ence sampling of open source project representatives known to the author was real-

ized. According to Joppe, such a convenience sampling is appropriate for exploratory

research where representativeness of the information doesn’t have the highest prior-

ity.4 Out of ten contacted project representatives eight persons replied positively to an

interview request.

1.4.3. Crafting Instruments and Protocols
Although scientifically interesting, for lack of capacity and time no multiple data col-

lection methods were employed, no quantitative data about the projects could be col-

lected and no multiple investigators could be assigned with interrogations.

4 See Joppe (2005)

Introduction Page 12

1.4.4. Entering the Field
In November and December 2004 eight interviews with representatives of eight dif-

ferent open source projects were conducted. As shown in table 2 the conversations

range from one to almost two hours of duration, all recorded as MP3 files. Following

the advice of Eisenhardt, the interview guideline was continuously adapted taking ad-

vantage of emerging topics and unique features of the case.

1.4.5. Analysing Data
To ensure the complete availability of conversation data all interviews were tran-

scribed and those conducted in German were translated into English.5 Thereafter the

texts were semantically categorized into 842 codings using the qualitative data ana-

lysis software MAX.QDA2.6 This allows various possibilities of evaluation, espe-

cially cross-case pattern sampling where comparisons between different answers to

the same question could be carried out.

1.4.6. Shaping Hypotheses
Already during the process of coding the interview fragments certain repeating pat-

terns could be observed leading to a first version of the subject-level promotion mat-

rix of community building.7 Iteratively continuing text analysis and framework

design the final structure of the subject-level matrix was achieved. Also, two differ-

ent points of time in an open source project, before and after official publication of

the software, could be detected forming the major content of chapters 3 and 4.

1.4.7. Enfolding Literature
Existing research papers about open source community behaviour and structure al-

lowed comparisons between literature and the case study results of this writing. Re-

markably, a number of times exactly the same phenomena were discovered underlin-

ing the generalizability of the constructs.

5 It needs to be remarked that although the translations were done with great care not all nuances

could be transferred to the English language. Also all of the interview partners speak English very

well and thus probably would have formulated answers differently if the interviews had been con-

ducted in English.

6 Unfortunately the tested open source software for qualitative data analysis didn’t meet the require-

ments of this research at that time.

7 The final matrix can be found on page 108.

Introduction Page 13

1.4.8. Reaching Closure
The final version of both tables, initialisation and promotion of community building,

were drafted when all of the relevant interview statements could be assigned to one

of the indicated fields of the matrix. Thus all available data was utilised forming the

definite conclusions of the research.

1.5. Investigated Open Source Projects
All interviews were conducted with closely attached community members of the

open source project. Thus, according to the definition in this writing, they can all be

called open source project leaders. The role they occupy in the community gives

them strong influence therefore enabling them to accomplish actions concerning pro-

motion of community building. Either they have founded the project themselves,

worked intensively in further development or are very active in promotion of the

open source project. Table 2 shows the main variables about the investigated pro-

jects, their representatives and the interviews itself.

Open Source Project

Plone Magnolia Cocoon Kupu Lenya TYPO3 eZ publish Xaraya

Category CMS Frame-
work

CMS Web
Application
Framework

WYSIWYG
Browser
Editor

CMS CMS CMS CMS and
Application
Framework

Prog. Lang. Python Java Java JavaScript Java PHP PHP PHP

Initiator(s) Alexander
Limi & Alan
Runyan

obinary Stefano
Mazzocchi

Guido
Wesdorp
and others

Michael
Wechner

Kasper
Skårhøj

eZ systems ?

Association Plone
Foundation

none Apache
Software
Foundation

none Apache
Software
Foundation

TYPO3
Association

none Digital De-
velopment
Foundation

Interviewee

Bernhard
Bühlmann

Boris Kraft Bertrand
Delacrétaz

Guido
Wesdorp

Michael
Wechner

Daniel
Hinderink

Bård
Farstad

Gregor
Rothfuss

Role in
the OSP

Community
Member

Community
Representa-
tive

Core
Developer

Core
Developer

Initiator and
Core
Developer

Marketing
Leader

Community
Representa-
tive

Core
Developer

Company 4teamwork obinary codeconsult Infrae wyona dpool eZ systems wyona

Interview

Date 2004-11-17 2004-11-19 2004-11-24 2004-11-25 2004-11-30 2004-12-03 2004-12-03 2004-12-07

Duration 95 min 108 min 63 min 79 min 106 min 116 min 78 min 103 min

Language German German German English German German English German

Location Bern, CH Basel, CH Cugy, CH Rotterdam,
NE (phone)

Bern, CH München,
DE (phone)

Skien, NO
(phone)

Boston,
USA
(phone)

Table 2: Information about the Investigated Open Source Projects, Interviewees and Interviews

The Open Source Project Page 14

2. The Open Source Project
This chapter aims to give a short introduction into the world of open source projects

(OSP). It is far from giving a complete picture but intends to clarify the most import-

ant terms and relations. First, the main characteristics of open source software are ex-

plained briefly including the definition and a typical life cycle of such software.

Second, the persons and groups of people involved in the open source project are out-

lined describing the different roles they might occupy during the project’s life cycle.

Finally, the community as the aggregation of all participating persons is characterized

pointing out common values, habits, rules and means of communication. Also reas-

ons are given why community building is essential by recruiting new contributors and

improving collaboration and production processes in the project. In figure 1, the OSP

is modelled to provide a short overview of the involved research objects.

Figure 1: A Very Abstract Picture of an Open Source Project (OSP)

Software:
● Source Code
● Binary Files
● Documentation Artefacts

Active Users

Developers/
Leaders

Initiators/
Owners/

Core Developers

Community

Inactive Users

Contributors

The Open Source Project Page 15

2.1. Software
The open source software consists of the complete source code, the executable binary

files and, depending on literature, also all documentation artefacts.8 The software is

the end product of all the community members’ work.

2.1.1. Definition
As defined on the OSI (Open Source Initiative) website open source software has to

be published under a license which fulfils all the 10 criteria of the open source defini-

tion.9 Especially important are the first two stating the license must not require any

fee for the distribution of the software and the source code has to be included in a

well-readable form together with the program.

2.1.2. Life Cycle
In his paper about a framework for OSPs Rothfuss describes the typical life cycle of a

community founded OSP.10 Starting with the famous “scratching a developer’s per-

sonal itch” phenomenon11 the initiator of the project develops a first solution for his

problem. Before widely publishing it he might ask interested persons for some feed-

back and initial support. In his study about profiling open source project ecologies

Koch assumes the first commit of source code into the code repository as the start of

the project.12 Once the source code is publicly available the initiator announces it

over various news channels and open source platforms attracting interested persons

to his project. If everything fits they get involved in the OSP first using the software

and later on contributing themselves to the continuous progress of the project. The

community grows and evolves always adapting to the changing environment. Thus a

clear difference of OSPs compared to classical software projects becomes obvious:

As long as the ambience is healthy the open source software is continuously ad-

vanced by its community as opposed to classical projects where their life cycle ends

when the development process has finished.

8 See FOLDOC (2005)

9 URL: http://opensource.org/docs/definition.php (2005-02-14)

10 See Rothfuss (2002), p. 38

11 See Raymond (1999), p. 23

12 See Koch (2004), p. 86

The Open Source Project Page 16

Applications actively used and embedded in a real world domain have to undergo

constant adaptation even if they have reached a state of maturity. Otherwise they be-

come progressively less satisfactory, as stated by the first law of software evolution

of Lehman/Ramin.13 This law complies well with the progression of open source

software, Bauer and Pizka conclude in their research about the evolution of free soft-

ware.14 A famous example of a successful OSP is the Apache Webserver. This pro-

ject is still advancing although it exists for almost ten years now. During the inter-

view Rothfuss mentioned: “Release 2.2 is just about to come out. There won’t be

such radical changes as from version 1.3 to 2.0 but minor ones for sure. For

example the filter API which is also used for PHP will be more flexible and other

modules are rewritten. So you can say projects like the Apache Web Server are very

stable because they implement a specification which by itself is very stable so there

won’t be big surprises. Also this project is some sort of infrastructure software. In

other types of software like book-keeping or desktop publishing it’s not that well

defined what the spectrum of functionality should include. So there seems to happen

more than in projects like the Apache Web Server.” Although a content management

system isn’t infrastructure software the TYPO3 project has advanced so far that quick

improvements are not possible any more, as Hinderink knows: “[To add changes]

you have to get into it quite deeply because a lot is available already. I believe it’s

much easier to get into a project where not much has happened so far. There are still

things to do on a relatively low level. It’s different in TYPO3. Probably no matter

what you want to do there are always at least attempts or beginnings of others. It’s

really difficult to have a new idea. So if you have a new idea that’s great but if not,

you need to at least look at the existing attempts and work with them. So

participation needs more.”

As the software grows in technical size measured e.g. in lines of code, also the com-

munity evolves continuously splitting into subsets and assigning new tasks to the

community members according to their skill, experience and current project respons-

ibilities.15 The healthy evolution of open source software is described by Rothfuss

when he distinguishes the stages of planning, pre-alpha, alpha, beta, stable and ma-

13 See Lehman/Ramin (2001), p. 16

14 See Bauer/Pizka (2003), p. 173

15 See Bauer/Pizka (2003), p. 174

The Open Source Project Page 17

ture.16 On the other hand, conflicts in the community may lead to interruption in the

software evolution.17 The most dramatic exit option is the fork, the independent fur-

ther development of the software enforced by one or more developers.18

2.2. Contributors
The term “contributors” encompasses all the active members of the OSP emphasizing

their individual aspects and roles. Thus a definition of a contributor is supplied, the

different roles of the contributors are discussed and finally some aspects of their mo-

tivation for participation are mentioned.

2.2.1. Definition
Gathering data about project participation Koch only considered persons actively pro-

gramming as part of the manpower of the community excluding people participating

in discussions, bug reporting, documentation etc.19 Rothfuss on the other hand stands

up against a two class community by assigning equal value to contributions of non-

developers as to those of programmers: “I believe there must be the same level of

incentives for them [i.e. non-developers] as there is for developers. It’s necessary to

have people who are motivated to work on the documentation. It’s important not to

create a two class community and to communicate that this kind of contribution is as

important as coding. So it’s important to value feedback and tests by the users. In

this way, a self-dynamic cycle starts letting people realize that their contributions

and skills are appreciated by the community. In a certain aspect it can be more

complex to do these things. If for example the code doesn’t compile it’s quite clear

what to do. But if the usability is bad, it’s not so clear what should be improved.

Such issues are much less visible so people are needed who point out the problems.”

So in this paper the definition of a contributor includes all persons actively participat-

ing in the progress of the OSP, software developers as well as non-developers.

16 See Rothfuss (2002), p. 38

17 See Van Wendel de Joode (2004). p. 110

18 See Wikipedia (2005)

19 See Koch (2004), p. 86

The Open Source Project Page 18

2.2.2. Roles
In the literature there is no common terminology concerning the various roles in the

open source movement. Whereas e.g. the term “user” is defined as a non contributing

person in Rothfuss’ framework for open source projects20, Zhao and Deek on the oth-

er hand conducted their survey by assigning this term to all actively participating and

contributing persons.21 In the examination of the Freenet project by von Krogh et. al.

persons not participating in software development were named “non-developers.”22

To simplify matters only those roles are defined which are mentioned frequently in

this writing. These are the roles of the contributor, the developer, the leader, the core

developer, the project owner and the initiator. Figure 1 shows the various relation-

ships of these roles and their combination in an abstract way by drawing cascaded

circles.

2.2.2.1. Contributor
All persons actively progressing the OSP are acting in the role of a contributor. On

one side there are active users participating e.g. in the mailing list discussions, report-

ing bugs or donating money to the projects’ foundation. On the other side there are

all the software developers and leaders of the OSP managing the progress of the pro-

ject itself. Not included are the inactive users who have downloaded and installed the

software and might even have subscribed to the mailing list but never write a mes-

sage nor actively show any other sign of their existence.

2.2.2.2. Developer
A developer is everyone who actively works on the source code of the OSP. This per-

son may or may not have commit access to the code repository neglecting the distinc-

tion made in the research about community joining by von Krogh et. al.23 The role of

the developer primarily refers to a person’s programming skills.

20 See Rothfuss (2002), p. 109

21 See Zhao/Deek (2004), p. 91

22 See von Krogh/Spaet/Lakhani (2003), p.1220

23 See von Krogh/Spaet/Lakhani (2003), p. 1220

The Open Source Project Page 19

2.2.2.3. Leader
As opposed to the software developer, the project leader is more concerned with the

human beings in the OSP. He cares about communication and collaboration issues,

manages for instance the software releases and organizes a supportive environment in

general. In coordination with the developers he is responsible for the promotion of

community building but focussing on management tasks rather than programming is-

sues.

2.2.2.4. Core Developer
As confirmed in various investigations about the level of developer activity in OSPs

there is usually a small group of programmers that is responsible for the largest part

of software development.24 These persons differ from the other developers in their

long experience with the OSP and their knowledge about the history and architecture

of the project giving them a large influence in the community.

2.2.2.5. Project Owner
When a certain “critical size,” measured in lines of code, number of contributors etc.,

is surpassed by an OSP it can’t be managed by a single person any more. A group of

people forming an executive board will then coordinate and control further evolution

of the OSP.25 They are called the OSP owners possessing root access to the develop-

ment server or the collaboration platform and thus being able to grant CVS commit

access to new developers.

2.2.2.6. Initiator
The initiator is the first person in the project contributing from the beginning on. In

the early stages of the life cycle of an OSP the initiator is the author of most of the

source code. In advanced projects his initial contribution may almost vanish among

the participation of the other developers. In the case of an OSP explicitly founded by

a software development company, this company can be viewed as initiator uniting all

initial developers.

24 See Koch (2004), p. 82

25 See Bauer/Pizka (2003), p. 174

The Open Source Project Page 20

2.2.3. Motivation
Various authors have investigated the motivation behind the participation in an

OSP.26 Hars and Ou name two different types of motivations, intrinsic and extrinsic,

as basis for all contributions OSPs. The research of Lakhani and Hippel concludes

the helping effort of the community results in direct learning benefits for the contrib-

utors. And Lakhani and Wolf found as major motivations fun, user need, intellectual

challenge and programming skill improvement. All these kinds of motivations are

also found in the interview responses of this paper but won’t be further examined

here.

2.3. Community
While contributors are part of the microcosmic view of the open source world, the

community around an OSP is part of the macrocosmic perspective. Again a definition

shall clarify the meaning of the term “community” in this paper.

2.3.1. Definition
As shown in figure 1, all the contributors of an OSP together form the community of

this project. In contrast to the single contributors’ view where e.g. the motivation of

the individual developer was important, the community view is concerned with top-

ics like shared values and common vision. Thus the contributors’ perspective is a

look from inside the OSP whereas the community perspective is an outside view of

the OSP perceiving the members of the project as a closed unity.

2.3.2. Collaboration Technologies
To facilitate the reading of this paper the most commonly used collaboration

techniques and terms in open source communities are briefly explained.27

2.3.2.1. IRC
IRC (Internet Relay Chat) is an internet technology that allows group communication

in chat rooms and also one-to-one communication for private talks. Since it was

created as early as 1988 it enjoys a very high diffusion among software developers.

To start to chat, one downloads a client application, then connects to an IRC server

26 See Hars/Ou (2001), Lakhani/Hippel (2003), Lakhani/Wolf (2005)

27 See Wikipedia (2005)

The Open Source Project Page 21

and finally chooses one or more of the available channels. Since chatting is a

synchronous way of communication and there might be people who are interested in

the conversations but can’t follow them continuously there exists the possibility to

log the discussions and publish them e.g. on a website.

2.3.2.2. Mailing List
A mailing list is a collection of email addresses of people who are interested in the

same topic of discussion. There are different types of mailing lists, closed lists where

the administrator has to add the recipients manually, and public lists where people

can subscribe on their own by sending an email to a specific address. Usually there is

also an online mailing list archive with search functionality where the conversations

are grouped into the discussion threads. As email is a very popular communication

channel most OSPs have one or more public mailing lists where the main discussions

about the project take place.

2.3.2.3. Wiki
A Wiki is a website where everyone can view, add and modify its contents. The basic

idea is that the creation of new pages with text, links and images should be as simple

as possible to ensure a low entry barrier for all contributors. The system uses a very

simple syntax to format text being written in the internet browser including the pos-

sibility to create new pages just by following certain writing rules. To prevent data

loss, all changes in the Wiki are recorded and can be recovered at any time. There are

many different Wiki implementations ranging from very simple solutions to sophist-

icated applications with lots of additional functionality like searching and media in-

tegration.

2.3.2.4. Blog
A Weblog or simply a Blog is a web application that manages the frequent posting of

news messages. Usually, a Blog is used as the personal diary of an author categoriz-

ing his entries into different topics. Sometimes there exists also an OSP-specific Blog

where various writers can post articles or an OSP hosts a so called Planet where all

the messages of the contributors’ Blogs are aggregated bearing the OSP’s category.

Most Blogs offer the possibility to add public comments so they act as an interactive

The Open Source Project Page 22

medium between the authors and the readers. With protocols like RSS (Really

Simple Syndication) the news can be monitored with RSS clients and they can also

be referenced among the different Blog websites.

2.3.2.5. Sprint28

A Sprint is a meeting of open source software developers for two or three days. The

goal is intense further development of the software in an XP (Extreme Programming)

styled manner which includes pair programming among other things.29 Developers

travelling from all over the world meet with their laptops in one single room enjoying

for some days the high-level communication and thus knowledge transfer of a physic-

al meeting. Often, short presentations are held by the core developers and social

events like community dinners follow the working days.

2.3.2.6. Revision Control Systems
Revision control systems are used in software engineering to record all changes of

the source code. They allow multiple developers to work on one software project

simultaneously and ensure no file revisions get lost. Most of these systems use delta

encoding to note only the differences between two file versions rather than the com-

plete files themselves. Thus the repository size is kept much smaller. Various systems

are in use. The most commonly known is CVS (Concurrent Versions System), avail-

able since the late 1980’s. A newer revision control system is Subversion (SVN)

which has various technical advantages compared to CVS. An important aspect con-

cerning revision control systems in OSPs is the difference between read-only and

write access to the code repository. Because in OSPs the source code is freely avail-

able the read-only access is also obtainable by everybody. On the other hand, to en-

sure control of the software and its quality the write access, usually called commit ac-

cess, is only granted to experienced developers of the project. Newcomers can only

write patches, small code changes saved in files, which are then implemented by the

committers because only these people have write access to the code repository. The

’joining script’ is the level and type of activity new developers have to go through be-

fore receiving commit access.30

28 See miniGuide (2005)

29 See Wikipedia (2005)

30 See von Krogh/Spaet/Lakhani (2003), p. 1227

The Open Source Project Page 23

2.3.2.7. API
The API (Application Programming Interface) refers to the overall structure and

design of a software. An API provides a set of routines, protocols and tools for con-

structing software applications.31 In object oriented environments the API specifies

how the behaviour and state of classes and objects is accessed.32 It defines what

routines are available, how to call them, and what they do, but it does not explain

how the subroutines are implemented and what algorithms are applied.33 So the API

tells developers how to access e.g. core functionality of a software framework in or-

der to write their own application.

2.3.3. Reasons for Community Building
Reasons for community building are recruiting new contributors as well as improving

collaboration and the project itself. In his research about OSP ecology Koch found

evidence for the intuitive assumption that input and output of projects is correlated.

He concludes the attraction of a large number of developers is vital for the success of

an OSP.34 So one of the reasons for the initialisation of the investigated content man-

agement system (CMS) Magnolia was to ensure the further development of the soft-

ware apart from the internal development effort at obinary, its founding company:

“Another goal of course is that we don’t have to keep on developing the CMS by

ourselves alone so we hope this will change in the future, too. Also we hope

Magnolia helps us finding more skilled developers who are motivated by working on

a well-known open source project. Such persons don’t have to work on a project

which nobody will see but can participate in a cool open source project and can also

make a name for themselves in the open source community.”

In Cocoon there is already a large developer community pushing the progress of the

project. Here the continuous improvement of the already available source code is im-

portant as Delacrétaz knows: “Maybe somebody even sees my code and thinks ‘Oh I

can make that better.’ so he improves my code.” He also adds that the different views

of the various community members can be an advantage for the project: “Also

31 See Webopedia (2005)

32 See Gale IT (2005)

33 See Java Programming (2005)

34 See Koch (2004), p. 81

The Open Source Project Page 24

writing tests could be something for non-core developers. Maybe it’s even better if

there are others who write the tests because they have a different view.” Although

the Cocoon project is already very advanced there are still large enhancements

possible: “There is one major change coming concerning the configuration of the

functional Blocks. Now you have to compile them but we would like to do this more

dynamically at run time. So you would just need to download the Blocks and plug

them into Cocoon. This will be a big internal change in the future. Otherwise I

believe we’ve used the 2.1 release for almost one year. It’s stable and you can do a

lot with it. I think it might even stay like this for the next couple of years. Maybe 2.2

will include the new Block system.” So a large amount of work has already been

accomplished, but the documentation could still use improvements: ”Technically

there will be not much change. We speak about documentation almost every week so

I guess we will improve in this area. We also see many new names on the users’

mailing list, names we don’t know. So this means it grows and more and more

people use it.”

Besides objective advantages like source code improvements and enhancements there

is also a psychological component in community building. For Rothfuss a growing

community is important for his own motivation: “If I’d work on a project that not

many people are interested in, I wouldn’t be motivated enough.” Also Wesdorp en-

joys the increasing attention of software developers for the Kupu project at the mo-

ment: “It’s good for the project obviously. More people use it and more people

develop it. It depends whether it’s not going to be chaotic. You don’t want something

chaotic. But as long as it is managed in a bit of a proper way I think it’s nice to have

a large community of people thinking about and discussing it. And it’s just fun in a

way to see something growing. That’s probably what I personally like about the

project.” In general Wechner states one doesn’t have to fear a growing developer

community because the code commits, too, can be monitored by the community:

“Actually there is practically no committer who harms a project. They are usually

very careful checking in code. In the worst case we can always rebuke the people

about their behaviour. We also have a commit mailing list where we get an email

whenever there is a commit.”

The Open Source Project Page 25

2.3.4. Characteristics of Desired Communities
Before starting to recruit new contributors for an OSP the leaders should be aware of

what kind of community they intend to build for their project. The interview re-

sponses showed there are certain common characteristics of desired community

members.

2.3.4.1. Productivity
Most important, the community has to be productive and really contribute to the pro-

ject. Wechner thinks this is not self-evident since there are often political issues, too,

that drain energy from the communities: “Of course it [the community] should be

able to create something and not to get stuck in discussions and let the project stand

still.” Describing what kind of people Wesdorp would like to meet in the Kupu com-

munity he also names the productivity aspect: “I think I’m quite happy with the

people we have right now. Of course I would be happy for just about anyone joining.

As long as they try to be productive I definitively stimulate everyone to join if they

can.”

Besides the helpful community members there appears to be the well-known issue of

people and companies just benefiting from the software without contributing any-

thing. Wesdorp mentions this problem in relation to the Kupu project: “There seems

to be a group of people that do not really understand that if they benefit from

something it would be nice if they contributed something. It’s not that I wouldn’t

want those people as users but we can’t really use them in the community. I think

that counts for any community, that’s just a general rather than a personal issue

specific to Kupu.” Wechner even believes there is only a small amount coming back

to the project of what people actually accomplish with it: “Yes, [the community par-

ticipates] a lot. Unfortunately many things never get published in the community.

Sometimes I see that it’s just the top of an iceberg that gets back to the project. For

example just some days ago somebody said something about DocBook so I asked him

what he did with it. He answered he had built sort of a document management sys-

tem for his company based on Lenya.” Answering the question of how such people

could be motivated to contribute their enhancements back to the project Wechner

states: “It’s difficult. You shouldn’t embrace people too much and invite them too

openly because they might be shocked and run away and never show up again. Still I

The Open Source Project Page 26

asked him if he would like to check the code into the project and after a while he

answered yes, he could do that.” Also in the TYPO3 community there are freeriders

but Hinderink thinks such behaviour is just stupid: “It’s almost the nature of an open

source project to attract freeriders. There are many people who use it, earn money

with it but don’t contribute anything. That’s usually also the majority. And there are

times when you get frustrated about this fact. It’s especially not funny when the other

one acts relatively aggressively. For example an agency realizes a lot of projects

with TYPO3 and creates new functionality along with them. And still after getting

the investment back they are not willing to publish the additional code e.g. as an

extension. [...] There are a lot of agencies who save hundreds of thousands on

licensing fees but still don’t donate anything. In some respect I also think that’s just

stupid. The involvement in such a system is also some sort of long term egoism. You

want the project to go on existing so it’s very stupid not to do anything for it.”

2.3.4.2. Self-Motivation
To be productive in an OSP one has to work independently and thus needs a high

level of self-motivation. To achieve something in projects like TYPO3 the tasks have

to executed from beginning to the end: “To work independently is almost the most

important capability such people need to have. You don’t sit together in an office

and usually you can’t meet; so people have to be able to work on their own. [...]

Kasper calls this ‘selfstarting fireworks’: somebody makes a proposal, writes down

the details and is still open for criticism. Others look at the draft, propose

improvements and the initiator implements them or defends his own propositions. In

the end he has to be motivated to do everything all by himself without expecting

Kasper to be extremely thankful or some other positive attention of the community.”

Usually the various contribution barriers allow none but the sufficiently eager con-

tributors to succeed.35 Raymond calls these barriers “filters” that developers actually

have to pass to contribute something useful.36 And Delacrétaz describes how the lack

of documentation may also have a barrier effect as described later in detail.

35 See von Krogh/Spaet/Lakhani (2003), p. 1231

36 Raymond (1999), p. 32

The Open Source Project Page 27

2.3.4.3. Diversity
To ensure the longevity of the OSP it is advantageous to have a variety of differently

skilled members in the community as Wechner notes: “Diversity helps to guarantee

stability by including different perspectives.” For a new project to become accepted

by the Apache Foundation there is even a certain limit on how many of the de-

velopers may come from the same institution: “Apache didn’t want to become a

second SourceForge so they introduced the incubation process. In this way they can

see e.g. if the community works. One common problem with donated projects is that

they are often driven by a mono culture - all the developers are from one company

only or there is only one developer. For the long term it’s important that the projects

have a diverse community. So projects which come out of the incubation time may

not have more than 50% of the developers from one single company. Lenya - as our

project is named now - achieved this and we even became a top level project this

summer.”

Concerning the different levels of skill and experience Farstad is open to any kind of

community members and enjoys the diversity in the eZ publish project: “I like all the

community members. Of course we have all different types of members in our

community. Some are just testing it for a few days and trying to install it for the first

time. Others are experienced and maybe have been there since the start. It’s not that

we would prefer one in front of the other.” Looking at the different tasks that need to

be accomplished in an OSP there results a long list of diverse jobs. Rothfuss tries to

outline them shortly: “Certainly someone will be the promoter. He doesn’t code

much but he’s active in many different communities. He will do the marketing for a

project and will make sure it’s mentioned all over the place. Of course good coders

are needed and people who like to interact with the community and help new users

with their problems. And then people are needed who look after the infrastructure

like CVS and so on. This might be delegated to some service provider like

SourceForge. Also people must be found who do releases and maybe also a project

leader is needed who tries to control the general direction of the project. Also

documentation must be done by somebody.”

The Open Source Project Page 28

2.3.4.4. Correct Behaviour
In order to guarantee the sustainability of a community it is important to maintain

good communication behaviour among the members. Wechner defines a good com-

munity as “...one that is honestly friendly.” And for Farstad a healthy community in-

cludes a high responsiveness: “Basically if you can ask a question and get a good,

relevant answer then you have a good community. And also if you can discuss future

features and improvements.” Unfortunately there are still people who don’t follow

the rules as he continuous: “Basically [these are] people who don’t follow the

etiquette, for example having 1000 exclamation marks in their subject. Then I think I

really don’t want to answer this message. Sometimes they just don’t know how to

behave. So that’s what we have moderators for who get rid of all the exclamation

marks.” One way to educate new community members is to inform them about the

communication habits established in the particular OSP for example by offering them

a mailing list guideline as in Lenya: “[We have] just the standard Apache mailing

list guidelines. Communicating via the mailing list is an advantage for the efficiency

but it’s also good for the culture in the project. To be friendly, and humble...”

Another issue are repeating subjects in the mailing list discussion which should be

avoided in order not to scare away productive but impatient contributors. So to focus

the online discussions on new topics only, Kraft expects participants to read through

existing documentation before asking questions on the mailing list: “Everything can

be a barrier. Just subscribing to the right mailing list might be one. It’s not that easy

in our project because I want people to first read through the Wiki and the mailing

list archives before posting something on the mailing list.” Also in TYPO3 there is

the notion to inform oneself first: “People have to follow the rules like first using the

FAQ and searching for an answer in the mailing list archives. Since the community

is mostly defined by the mailing list the things important for mailing lists are also

important for a healthy community.”

2.3.4.5. Altruism
Obviously, contributions are essential for a productive community – but they are not

everything. As Rothfuss points out it’s the community that plays the essential part in

a project, not the single contributor: “Usually you don’t want to have people on an

ego trip or running amok as soon they get commit access. [...] If a single person

The Open Source Project Page 29

codes a lot but harms the community by his actions it’s not a healthy project. The

situation might change and he suddenly might not be interested in the project any

longer. So it was great that he contributed so much but it’s bad he destroyed the

fertile soil for others to join. Open source projects are not one-man shows.”

Often community and business interests are opposed. Being in the position of offer-

ing services for Lenya with his software company and simultaneously being one of

Lenya’s leaders Wechner knows the challenge of this situation: “You need to learn to

distinguish between issues that only concern the open source project and thus must

be discussed in public and between issues that are company specific, which you

don’t want to communicate to the outside world. After all, everyone on the mailing

list has his own interests and that’s ok. A problem arises only if you push your

interests in ways which usually aren’t possible for everyone in a community like

consciously leaving others outside of the decision process. In the long term that’s

bad for the community.”

So in crucial situations it is especially important to bear in mind the importance of

the community and not to come to self-centered decisions although technically they

might be possible: “Take e.g., backwards compatibility: If somebody breaks

backwards compatibility in a stable branch then all our customers won’t be happy

any more; and not only our customers but all the people who use the software. I will

think of all our customers who will need an update so it’s bad for us and all other

installations of the CMS. And yet, I won’t go and say ‘We don’t do that.’ It’s the way

of communication. We don’t say: ‘We are Wyona and because we don’t want to have

that we don’t do it.’ You can’t communicate like this, but you can say ‘I know

customers who will have a problem with this change.’ And it won’t be different with

others [having customers who use the software].”

2.3.4.6. Perseverance
As Bertrand states long-term dedication is one of the main prerequisites for a new de-

veloper to get commit access for Cocoon because introducing somebody to the

source code, the community members and their habits always involves some effort:

“So in the PMC [Project Management Committee] we discuss about the applicant

‘What do you think, is this guy ready or do we have to wait a little longer to see

more?’ We try to evaluate all the criteria because we want the committers to stay in

The Open Source Project Page 30

the project for a long time. This is important for us because it’s some work to

introduce somebody to the project. Or of course it’s ok if they say ‘I can only work

during 6 months but intensively.’” The Cocoon community has learned this lesson

from experience:“It did happen a couple of times concerning the documentation:

Some people came and said ‘Hey your documentation is nothing, I can do it way

better.’ So they developed large plans how they wanted to do that but after a few

weeks we didn’t hear anything any more. And that’s what we fear, people who come

with very great plans and then nothing happens in the end - sometimes it does, but

usually not. So we try to find people who make their way into the community

gradually, learn how to deal with others, learn how to handle conflicts - of human or

technical nature.” In eZ publish, too, long-term participation is valuated highly:

“Another point is to have the same people not only for one week but for several

years. That’s what we have, members who’ve been around for three or four years.”

2.3.4.7. Common Vision
One of the challenges for a community is to be productive by focussing on the same

goals as Wechner briefly describes: “The community must be able to find consensus

and at the same time define priorities.” The Kupu project members, too, seem to

agree upon a common vision: “It’s nice to be talking about features and directions to

go. A group with really completely different people that still have the same goal.

That’s just cool to watch that.” The difficulty is to be open for new directions and at

the same time focus on certain strengths. Delacrétaz describes this process of finding

a common vision in the Cocoon project: “Back to the vision: The point is Cocoon is

very open and we are just starting to call it a web application platform. This is very

open. [...] So the vision is very open and it took quite a while to get one. I think we

have it now. [...] The vision is to become an XML based application platform. This is

very broad so we are always discussing where we are going, what we are doing,

what has high priority, what is of low priority and so on. But at least we have the

clear aim to keep the core of Cocoon as small as possible. Everything else is

modular.”

The TYPO3 project appears to be an exception: there hardly seems to be a common

vision as Hinderink states: “I think there are about as many visions as there are

community members and also the expectations are different.”

Initialisation of Open Source Projects Page 31

3. Initialisation of Open Source Projects
This chapter describes in a twofold manner the optimal environment to start off a

new OSP. First, human based conditions are examined to give an overview of the

positive leadership skills and behaviours of persons who are in charge of the new

OSP. Secondly, the necessary decisions and the positive preconditions of the project

itself show the settings that promote the success of the OSP.

3.1. Leadership Skills and Behaviours
This chapter summarizes the optimal skill set and behaviour patterns of the leaders of

an OSP. Of course such skills can be learned any time during work on the project or

people with the required skills can be motivated to join the project. Nevertheless it’s

very helpful for the initiators to possess as many of these skills as possible. So this

chapter is part of the initialisation process of an OSP. As any order of relevance

would be arbitrary the skills and behaviours are listed in alphabetical order.

3.1.1. Assertiveness
Judged from the number of mentionings in the interviews assertiveness is not one of

the most common yet an important leadership skill of persons in charge of an OSP.

Especially release managers need the ability to assert themselves as Kraft experi-

enced in Magnolia: “The release manager must be somewhat strict and decide when

we’re doing a new release. It’s not typical for an open source project.” Rothfuss

explains why assertiveness is not a typical way of interaction in OSPs, answering the

question about the lack of a feature freeze37 in the Xaraya project: “In a way there

was [a feature freeze] but nobody wanted to stand in the way of somebody who was

doing something - like in many other open source projects. If some people are

checking in new features all the time it’s very difficult to say stop. But these features

have to be tested again and have to be mentioned in the documentation.” In contrast

to the important attitude of openness release managers must be able to enforce fea-

ture freezes to guarantee the on-time shipping of new software releases. Bühlmann

remembers an incident in the beginnings of the Plone project where this was not

achieved: “For example the transition from Plone 1 to Plone 2 was very difficult be-

37 Definition “feature freeze” in FOLDOC (2005): Locks out modifications intended to introduce new

features but still allows bug fixes and completion of existing features.

Initialisation of Open Source Projects Page 32

cause the developers wanted to implement too many features. So the product never

got mature and release 2 was delayed. One company from Austria then said that they

needed Plone 2 because one of their projects required features of release 2. So they

began to develop their project on a beta version of Plone 2. But because there were

so many changes all the time they had to rewrite their software every week. Finally,

Jodok Batlog wrote a long email where he complained that he got sick of this be-

cause they had to start from scratch every single week. He demanded a professional

release management.” This demonstrates the necessity of having strong OSP leaders

in the community who take the responsibility assuring strict release management.

Summing up the skill of assertiveness, Wechner explains why strong and thoughtful

leadership is crucial for building a healthy community: “Nevertheless I believe in

strong leadership. This doesn’t mean shouting: ’Shut up everybody, I’m talking.’

This is a misunderstanding of strong leadership. It means to be very clear but still

open for consensus, bring others to consensus, and without compromise draw a line

to those who aren’t willing to. Because if we want to be such and such a community

everyone has to cooperate and if anyone doesn’t he’ll have to leave.”

3.1.2. Commitment
Commitment in the context of leadership behaviour can be defined as an intense way

of working on the OSP and investing lots of personal time into the project. Bühlmann

knows Plone community members who do this: “You would need two hours a day

just to read all the emails, and in addition you’d have to be in the IRC chat. There

are people who do that, they live for Plone. It’s become so broad. If you want to

work with Plone in a company you must do that 100% otherwise you don’t have a

chance. Plone has become very large and complex so you have to invest a lot of

time.” Hinderink observes the valuable commitment of Kasper Skårhøj, founder and

leader of the TYPO3 project, and also knows the results of such a behaviour: “I think

it’s not really leadership which caused it [the TYPO3 community] to grow so big.

From my perspective Kasper has two extraordinary skills. The first one is the im-

pressive ability to concentrate. You can discuss with Kasper from eight o’clock in the

morning until ten o’clock in the evening without getting the impression of him get-

ting tired. [...] Thus he produces things above the average and with consequences.

So maybe somebody proposes something, Kasper works on it in silence for weeks

and then shows up with a result anyone else would have produced in no less than

Initialisation of Open Source Projects Page 33

three months. I believe this is the secret of his success.” As initiator and core de-

veloper of Kupu, Wesdorp confirms this committing attitude by describing his own

perspective of his role: “Concerning me I think it’s an advantage because I can look

at it from a pet project kind of view. I can just decide ‘Hey I think it needs that.’ and

can spend like 20 hours on that specific thing even though no one is asking for that.”

3.1.3. Communicativeness
Raymond believes that for OSP owners communication skills may be even more im-

portant than their design cleverness.38 Developers must be attracted to join and be

“kept happy about the amount of work they are doing.” Hinderink perceived the

same in TYPO3 and also remembers another OSP where good communication led to

high motivation: “I believe it’s important to have somebody who thinks and commu-

nicates orderly, somebody who thinks in advance what the website needs - because

this is somewhat the heart of the community. What information do I need to commu-

nicate to the community? And it’s important to take this really seriously. Looking at

a project like Bricolage the guy is doing this really well. Although I don’t participate

in the project I see the guy - it’s more or less a one man show - always makes a re-

lease and writes an email when he does anything new. He’s doing this consequently

and brings it to a point, just writing what’s new and what are the tasks. I believe it’s

enormously important to take communication really seriously.” On the other hand

not all software developers are highly communicative, especially not in written lan-

guage. Wechner experienced this when his company intended to open development

of Lenya obliging the core developers not only to chat when they were physically to-

gether in the same room but to communicate via the mailing list: “You have to make

your people aware that if they want to discuss something they have to do it via the

mailing list. That’s not very easy. I believe in our project it’s working this way now

but it wasn’t easy to achieve. You always had to say ‘Write it in the mailing list.

Write it in the mailing list. Write it in the mailing list.’ People are not used to open

communication, they usually communicate in a closed way. You can give them in-

centives, however. For example give them a way to become visible. But there are

people who don’t want that or don’t need that. It’s important that they know that the

project needs this open communication, otherwise it dies and this is bad for the com-

pany.”

38 See Raymond (1999), p. 47

Initialisation of Open Source Projects Page 34

Concerning uncommunicative head developers of OSPs Hinderink suggests to look

for deputies who like the task of sharing information about the project: “So if

somebody as a developer is not able to do this [serious communication] - which is

absolutely ok - he must find somebody who can do this and also likes to do it.

Otherwise the whole thing doesn’t serve much, it just stays on the technical level and

doesn’t get distributed. Neither will there be professionalising concerning building a

community which helps and works together. The less information you make available

in a bundled form the less people will be able to collaborate.” Rothfuss, however,

assigns a certain responsibility for communication to each software developer. He

proposes the use of weblogs to accustom oneself to write more frequently:

“Traditionally developers were rather autistic and didn’t use weblogs. It’s changing

now, I believe. With weblogs you can see better what the developers are working on

and thus the reputation might improve. Also it’s a possibility to enlarge the fan club.

Another effect is the developers get used to express themselves and thus the mailing

list also benefits. It helps when people learn to write better.” In almost all

international OSP communities English is the primary language of communication

although it might not be the native language of most of the contributors. Fortunately,

a high level of English skills is not necessary for communication as Farstad states: “I

don’t think it’s that important, you just need a certain level. You don’t need too much

language skills to join the community at all.”

3.1.4. Experience
Working in a large software project with many thousands of lines of source code

poses among other things the mere challenge of knowing about the presence of cer-

tain parts of code. Those who wrote most of the code, the core developers, are usu-

ally also the ones with the most knowledge about and experience with the source

code. Bühlmann knows about the huge knowledge of Alan Runyan, one of the initiat-

ors of Plone: “He does know a lot but today you can’t know everything about Plone.

There are so many additional products. Still he’s the one with the greatest

experience.” Wesdorp even considers informing contributors about the current state

of the OSP to be one of his and other core developers’ specific duties in Kupu: “And

sometimes I do have to point out that ‘Hey, wait, what you are trying to do is already

covered by some helper library or something.’ [...] Since I wrote most of the API I

know the API better than anyone else I’d say - maybe Duncan nowadays knows as

Initialisation of Open Source Projects Page 35

much as I do. So Duncan and me are usually the people who help out with API

questions.” Delacrétaz confirms this “highlighter” task in Cocoon where experienced

developers respond to eager contributors: “Only if we see it’s already incorporated

in Cocoon we’d tell them ‘Oh we’ve already got that.’ Often they just don’t know it

already exists in Cocoon.”

3.1.5. Helpfulness
One of the very central attitudes of OSP owners is their helpfulness. In their empiric-

al study about the OSP Freenet, von Krogh/Spaet/Lakhani found out, 89.5% of all

mailing list participants received an answer when they initiated a dialogue by starting

a new discussion thread.39 Bühlmann observes the same characteristic on Alan Run-

yan: “Yesterday, e.g., Alan Runyan, one of the Plone initiators, was in the chat. One

guy asked a very basic question and Alain took his time to answer the question. This

really helps community building if you patiently answer the stupid beginner ques-

tions, too, even if you are the main developer.” Since newcomers to OSP communit-

ies usually do not posses personal relationships with existing community members

they depend on the support of insiders. Wesdorp knows about the importance of this

issue and suggests “to make sure to help everyone who wants to join the project.” In

Kupu he observes it is not hard to get information by asking on the mailing list being

aware of the positive impact this has on community building. On the other hand, time

of the OSP owners is always limited as Delacrétaz notices. Developers receive most

help when they show personal attempts and thus can specify their needs very clearly:

“So it works only if people do the programming by themselves or at least try and

then ask for help for the remaining 10%. Then we see that they’re doing something.

Maybe somebody can explain it to them and needs only five minutes for that. So

people who have ideas but can’t finish them on their own will get lots of help by the

community. [...] Just make sure people receive help when they come. Even if we

think it’s rather a strange idea we try to make the people explain it.” Since Farstad

observed the multiplying effect of helping people out might recruit them as new help-

ers themselves, he formulated the following rule: “You need to be interested in help-

ing people out, to get them started. We have the philosophy ‘If you recruit one per-

son to the forum he will probably recruit one or two more.’ So it’s really worth the

time.”

39 See von Krogh/Spaet/Lakhani (2003), p. 1225

Initialisation of Open Source Projects Page 36

3.1.6. Openness
Expressed in various ways, openness is the basic mentality of all the leaders of the

examined OSPs. Openness is a specific skill of OSP owners since it is not the usual

way of leading closed source software projects in the business world. The different

aspects of openness concerning joining, choice of work, leaving and communication

of an OSP are described in detail.

3.1.6.1. Open to Join
Bühlmann believes one of the main reasons why the Plone community grew so

quickly is the fact that the OSP owners of Plone granted CVS commit access to all

who demanded it: “Right from the start they had created a SourceForge project and

let everyone do CVS commits into the project. So from the beginning they gave

everyone the chance to participate in the project.” Nevertheless, quality assurance

had to be cared for as Bühlmann mentions: “Still they had kind of a code review. For

example if somebody checked in something that didn’t work first of all they got a

telling on the mailing list. And then these changes immediately got deleted. In this

way a very open culture was developed where criticism is possible without

generating a tense atmosphere. So one could easily change things, which worked out

fine in the beginning because there were only about 30 developers.” Also all inter-

viewees confirmed that commit access for the repository is open to anybody who is

willing to contribute to the project. Hinderink describes the joining script in TYPO3

as following the principle of meritocracy of the Apache Software Foundation:

“There is a good text on the Apache Software Foundation website concerning

meritocracy. The same holds for TYPO3. There is quite some social mobility inside

the community. It’s not an old boy’s club, many people joined only recently but

already have lots of authority concerning the project. All entered about the same

way: They proposed improvements and realized them - so they all convinced by their

achievements. One can’t expect Kasper to grant access to someone just because he’s

asking for it, jeopardizing the entire quality. If somebody makes a proposal, demon-

strates how it works and what the advantages are it’s probable he’ll get access if he

is doing so continuously. Nevertheless, the overall control over the project will re-

main with Kasper.”

Initialisation of Open Source Projects Page 37

3.1.6.2. Open to the Choice of Work
In general, OSPs are also open in respect to the kind of contributions called the

“bazaar style” of software development by Raymond.40 As OSP leaders can’t force

contributors to do certain tasks they are free to choose what to work on. Wesdorp

knows this from the Kupu community but also has experienced specialisation tenden-

cies: “Everyone is allowed to work on every part but as usually everyone has his

own favourite parts to work on and some stuff he benefits from. I think there isn’t

really someone in the project that controls it and says ‘This should be done and this

should be done.’ Everyone just works on the thing that he thinks is important for the

project or for his personal benefit at this point. And so far it works quite well.” The

challenge of this leadership skill is to accept the work of others as Wechner says:

“The other skill is to be able to let go and let others do the work in their own way.

[...] This is part of being open and letting people come into the project.”

3.1.6.3. Open to Leave
As OSP leader one even needs to be open to leave the project voluntarily. Raymond

called this his lesson number 5: “When you lose interest in a program, your last duty

to it is to hand it off to a competent successor.“ 41 Wesdorp confirms this with his

own attitude of working in the Kupu project: “Personally I’m a hacker who likes to

work on new projects and I’d love it if these projects could develop a life of their

own. That’s more or less what I’m trying to do with Kupu. It’s not that I want to step

out of it completely at some point but it would be nice if most of the work and think-

ing could be done by someone else.”

3.1.6.4. Open to Communicate
To start community building communication must be opened to be available to a

broader audience as Wechner states: “One thing that we did consciously was to open

our development. Initially, the developers came only from our company so we had a

lot of internal communication. So to make sure that the outside world was informed

about what was going on we consciously decided to communicate via the public

mailing list only. So now we practically don’t communicate about Lenya internally

40 See Raymond (1999), p. 21

41 See Raymond (1999), p. 26

Initialisation of Open Source Projects Page 38

any more. This is very important because otherwise it would seem like we did

something for our private business cut off from the outside world. I’ve heard of pro-

jects where this became a major problem - even in Apache projects.”

3.1.6.5. Limits of Openness
Although open communication mainly has advantages Delacrétaz describes a certain

situation where business reasons limit the openness of the developers: “Everything

has to be done as open as possible. Sometimes it’s not possible because if somebody

has a big contract with a company he can’t tell publicly for whom he is working.

Maybe he has sort of an NDA, a Non Disclosure Agreement, which tells him not to

betray the customer’s name. [...] Everything we do is open. Everybody can see one

another’s code and so on.” Openness can also do harm on a personal level e.g. dur-

ing the election of a new project committer. In such situations strong confidentiality

of the OSP leaders is necessary to avoid conflicts in the community. Rothfuss ex-

plains: “One problem in open source projects is it’s common to do everything as

open as possible, like over the mailing list and so on. On one hand this prevents ru-

mours like ‘Oh this is a club where everything runs behind closed doors. The code is

available but all the discussions are secret and I can’t join them.’ On the other hand

it can be quite difficult to live with. For example when I’m a committer and some-

body gets nominated to become one and I have doubts about this person, saying this

on the public mailing list would be like hitting this person into the face. Although my

doubts might be justified, they still shouldn’t be announced all over the place. So the

voting is done mostly via a private mailing list and only the result gets published.

You don’t want to attack these persons personally but still you would like to be able

to express your thoughts uninhibitedly. Someone e.g. might not yet have contributed

enough to the project or doesn’t know how to behave in this community. If this hap-

pens internally the decision might be to wait a little longer and this person never

knows he’s watched until it’s time.”

3.1.7. Patience
As OSP leader it is indispensable to posses a good amount of patience as many of the

interviewed persons experienced. For Wechner, it’s important to work with a long

term perspective and also Wesdorp recommends: “And do take your time. That’s

really it, it needs a lot of time, a lot of patience, a lot of openness.” Even the at

Initialisation of Open Source Projects Page 39

present very large TYPO3 community grew slowly at first after Kasper Skårhøj pub-

lished it in a PHP news channel, remembers Hinderink: “He opened up a new web-

site and first announced it at Hotscripts. It didn’t start like an explosion but grew

continuously. Only in the last two and a half years did it grow dramatically.” Be-

sides concerning community growth patience is also necessary in communication is-

sues, for example repeatedly answering the same questions as Wesdorp practices in

the Kupu community: “But currently our conversations are not logged indeed so it

does happen that people ask the same questions twice but then we will answer twice,

it’s not that bad.” Even as initiator and core developer of Plone, Alan Runyan, too,

takes his time and answers beginner questions on the IRC chat as Bühlmann ob-

served.

3.1.8. Personality
Linus Torvalds is “a nice guy who makes people like him and want to help him” as

Raymond remarked.42 He also says “it helps enormously if you have at least a little

skill at charming people.” Similarly, Hinderink perceives the presence of the TYPO3

initiator Kasper Skårhøj as giving a very personal touch to the project and the entire

community: “There’s a much more personal relationship to the project if there is an

individual programmer at the centre. [...] Personal wishes of the project owner like

‘I always wanted to communicate in a friendly voice.’ also give continuity to the pro-

ject. So it stays more personal.” Charisma also helps when speaking at conferences,

especially in front of media representatives. Bühlmann remembers a presentation of

Alan Runyan: “Additionally in Las Vegas there was the Computer Associates Con-

ference in September of this year [2004] where the Plone project was presented.

Alan Runyan was on stage talking in front of 3000 journalists in the room. This also

promoted the project.”

3.1.9. Presence
The continuous presence in the community, either physically or virtually, is a very

positive behaviour of most OSP leaders. Bühlmann observes the high availability of

the core developers of Plone: “It was high in the beginning and it’s still very high.

Sometimes I get the feeling the core developers are in the chat almost 24h a day!”

And Kraft, initiator of the Magnolia project confirms this behaviour by actively

42 See Raymond (1999), p. 49

Initialisation of Open Source Projects Page 40

participating in the mailing list: “I wrote about 400 emails. A quarter of the entire

traffic we had from November 15, 2003 to November 15, 2004, during the first

release.” Physical meetings are also very important so the company eZ systems lets

Farstad travel around the world to strengthen personal relations with community

members of eZ publish: “My role is software developer and I’m one of the main

designers behind eZ publish, me and Amos. I also led development of eZ publish for

the past five years. Now I’ve got another job: I’m in charge of the open source

relations as we call it. So I’m working a lot now with the community and basically

getting the message out to the people.” OSP owners usually enjoy meeting their

community so Bühlmann could motivate both initiators of Plone to participate in a

developers’ meeting in Switzerland: “I then asked him [Alan Runyan] if we

shouldn’t organize a Plone Sprint, I would organize one in February 2003. So he

promised to participate and since Limi attended this Sprint, too, I got him on the

participants’ list as well.”

3.1.10. Programming
Raymond has a clear opinion about the fundamental programming skills of initiators

of OSPs:43 “A certain base level of design and coding skill is required, of course, but

I expect almost anybody seriously thinking of launching a bazaar effort will already

be above that minimum. The free-software community’s internal market in reputa-

tion exerts subtle pressure on people not to launch development efforts they’re not

competent to follow through on. So far this seems to have worked pretty well.” Bühl-

mann confirms this hypothesis by pointing out the long software development experi-

ence of the founders of the Plone project and the importance of having such people in

the OSP community: “In addition the combination of people was favourable. They

were not freaks but people of at least 30 years, i.e. not so very young. [...] Plone is-

n’t a toy. Nothing against PHP but this language can be learned quickly by com-

puter newcomers and they can create applications with it. [...] These jobs require a

well founded education in computer science to be able to use Plone for developing

applications. You need to know what happens behind the scenes. [...] The members

of the core team are all very skilled software developers. Part of them has come from

the Java world with about 10 years of experience in software engineering. This is

obvious. The people working on Plone really knew what they were doing and how it

43 Raymond (1999), p. 48

Initialisation of Open Source Projects Page 41

should work. They are software architects who don’t just start coding but first think

about how to design the system to make it extendible in the future.” In the end, the

only thing that counts is the software as Hinderink states. So high programming skills

of OSP leaders like Kasper Skårhøj are indispensable to develop a great application:

“It’s mainly his work. It’s the same in about every open source project. If the

product is not good, you can communicate as much as you want, it doesn’t help. Of

course both must be present. If you want to grow you have to communicate well. But

you can’t sell bad stuff.”

3.1.11. Responsibility
In contrast to users and extension developers, the OSP owners are interested in the

overall success of the project. Their long-term perspective assigns them a large re-

sponsibility. Wesdorp summarizes this duty as follows: “I think it’s always import-

ant that there is someone who is really taking care of the project in a sense that he

always keeps an eye out if things are not really going wrong and that sort of thing.

And there is quite a large probability that I’ll always be that person and that people

somewhat depend on me. There should be always someone who answers emails on

mailing lists that don’t get answered and that sort of thing. I don’t see someone else

picking that up easily.” Later on he describes some examples of how this responsibil-

ity is expressed in the daily activities of an OSP owner: “Usually if you are a de-

veloper of a team you answer to the emails you find interesting or important. And

that means that some of the emails will not be answered. And I think it is important

that those get answered, too. So that’s something I still do a lot for the community.”

Similar answers were given by Ian Clarke while talking about the Freenet project.44

As owner of this OSP he remarked the following: “You’ve got all of these tasks

floating around and then people take tasks that they want to do. I think what makes

the core programmers special is that they’re willing to do the tasks that no one else

does because I think they take a greater sense of personal responsibility and a more

long-term approach.” Besides taking care of the leftover but necessary work OSP

leaders must also assure healthy communication, Hinderink is convinced: “I think

the tone is very important. There must be people around who take care of the way of

how people deal with each other. Communication has to stay factual, with humour

but not too much.“ Delacrétaz holds the same view and also shows the positive effect

44 Compare von Krogh/Spaet/Lakhani (2003), p. 1230

Initialisation of Open Source Projects Page 42

polite communication has on community building in Cocoon: “I think respectful

communication is very important for us. If a conflict happens on the mailing list, for

example people get angry and disrespectful, we interfere immediately. I believe the

Cocoon community is very good. I’m there since about 2000 and I think since then

only two people left the community because of disagreements. That’s not much com-

pared to the about 100 daily emails on the developers’ mailing list. Of course we

don’t agree all the time but as long we can discuss openly and with respect it’s ok.

But if for example somebody says something wrong another might write back ‘Please

apologize, what you said was not right.’ It has happened a couple of times so far.

After some incidents people start acting respectful automatically. So when I realize I

wrote something wrong I reply myself: ‘Oh I’m sorry, I didn’t mean it like that.’ I be-

lieve this is very positive.” Next to solving communication conflicts OSP leaders also

have to make an extra effort to support the community when they introduce new parts

of the software. Hinderink calls this the principle of “completeness:” “There is

Kasper’s ideal of ‘completeness.’ He doesn’t just throw something at the world. He

develops something, writes documentation and does lots of other things and only

when all the dimensions of the package are covered and it can be presented he actu-

ally publishes it. I believe this is extremely important.”

3.1.12. Visionary
As initiator and OSP leader it is essential to follow one’s own vision of the project

but also to justify one’s reasoning as Wechner says: “Besides some amount of this

good humbleness it’s important to communicate your vision clearly - and to give ar-

guments why you have this specific vision. For example explaining why one believes

a trend has arrived and how to react to that.” The founder of Cocoon, Stefano

Mazzocchi, is not much involved on the programming side any more. He is,

however, still engaged in the future of the project according to Delacrétaz: “He’s not

very active on the code but rather concerning the vision and so on.” Also Hinderink

was and is a visionary person for the TYPO3 project: “In the following year 2002 I

was already involved a lot and wanted to take an active part to find out where to go

with TYPO3 in the future. I participated in ongoing discussions, especially the one

about the introduction of a modular concept.”

Initialisation of Open Source Projects Page 43

Especially for software companies it is vital to advance their products continuously

and to have a clear direction for this. Kraft has the strong vision to improve the

Magnolia CMS further in the enterprise CMS area: “But there is still a large

potential inside the CMS area. We would like to advance it especially in the

enterprise CMS area because Magnolia already has some important features like

clustering and separation of authoring and live environment.” Although Wesdorp’s

desire to advance Kupu is high at the moment other technologies set limits for the

WYSIWYG HTML editor: “As I said I would like to rewrite the whole Kupu but this

may not be in one year and not in five years either. We are just aimed for stability

and hope for new browser features. [...] It’s one of the goals of Kupu to employ new

browser features as soon as possible. But unfortunately we are stuck with Internet

Explorer because currently it looks like development there is almost dead.” While

working actively on the Kupu project Wesdorp is already visionary about his next

project: “That project is a pet project of mine that I’m currently the only developer

of. I’m going to release that and I hope probably in December. It’s going to be a

JavaScript WebDAV client which does sort of all the content management tasks

completely from the client. So the only thing you need is a WebDAV capable server

and then you just can login to that and create new directories and new files and that

sort of thing. It’s going to be released in the GPL so the idea is after the 0.1 release

has been done people can join - maybe I can build a community too, we’ll see. As I

said I like starting up new projects but at some point I like to see them getting picked

up by others, too.”

3.2. Prerequisites of the Project
In contrast to the chapter above, which covered person-related properties, the follow-

ing chapter discusses prerequisites of the project itself. Initially, the programming

language and the open source license of the new OSP must be chosen, which has a

large influence on the further evolution of the project and mostly can’t be changed

any more afterwards. To start with, a usable part of the software must be present, as

well as the demand for such a software. Its degree of novelty and the possible applic-

ability define the range of the project in the OSP market. Furthermore, a high level of

communication of the initiators promotes community building strongly in the critical

starting phase.

Initialisation of Open Source Projects Page 44

3.2.1. Programming Language
When starting a new OSP the question of a deliberate choice of programming lan-

guage usually doesn’t arise since the initiators already have their preferences or are

limited by their skills to one language. Still there are important considerations to

make since the type of programming language determines the future of the OSP to a

high degree. Rothfuss dares a comparison between Java and PHP: “If you look at the

number of projects you’ll find much more PHP projects than Java projects. Java

isn’t that easy to get into and see results as quickly as in PHP so it might not be that

interesting for a single developer. Usually, Java projects are used in large scale

applications so you find only few Java based message boards and so on. So there are

also different kinds of people who are interested in these different software areas.

Easy accessibility is the positive aspect of PHP and other scripting languages. On

the other hand this may be a problem as you’ve seen in PHPNuke or PostNuke.

Because the bar is much lower people quickly think they know all about software

engineering. This leads to poor code and a bad position of the project itself.” The

difference in the learning curve of programming languages is also confirmed by von

Krogh et al.: “Some languages are complex and difficult to learn, while others, i.e.

simple script languages can be mastered fairly easily. Additionally, some computer

languages are widespread and can attract a large number of potential contributors,

while others are known by few, and thus raise contribution barriers.” 45

Farstad is convinced of the advantages of PHP for their content management system:

“We chose to use PHP. It is a language which is very simple to use and the learning

curve of PHP is quite low. Also looking at the worldwide hosting providers it’s the

most used language as well. As far as I know it is the most frequently used

programming language for web applications. That’s good because it means you have

a lot of potential users and contributors for your community. If we had used another

programming language which is more obscure, harder to learn and not so

widespread, that would have changed the whole potential for the user base. So PHP

is a very good language for this purpose, at least this is our experience.”

45 See von Krogh/Spaet/Lakhani (2003), p. 1232

Initialisation of Open Source Projects Page 45

Although Python, the programming language of Plone and Zope, is not very popular

Bühlmann likes the language because of its high technical advantages: “Python is a

cool programming language and we have many developers in Plone who’ve come

from the Java world. The disadvantage of Python is that it’s not well-known. At the

moment Java and .net are number one, then comes PHP and finally comes Python, I

think. But Python has some important advantages: It’s a scripting language, so it’s

not necessary to bother about compilation. Also if there are 10 developers in Java

writing an algorithm there will be 10 different solutions. If there are 10 Python

developers their solutions will be very similar. You can read Python very easily and

you’ll quickly understand how a Python application works. The guy who developed

Python tried to pick all the advantages of different languages like C++, Perl, Java

and so on and combine them into Python. This is one of the reasons why Plone

advances so fast: it’s so easy to understand someone else’s Python code! I believe

problems can be solved with much less code lines in Python than in other

programming languages.”

In general, Rothfuss observes a certain evolution of the programming languages with

a tendency to correspond to each other more and more: “In PHP, VisualBasic and

Perl it can be observed that the criteria of a well written software increase

continuously. For example with PHP5 the difference to Java has shrunk again so if

somebody really knows how to program PHP5 he shouldn’t use shortcuts like global

variables and all this stuff. This means VisualBasic.net is much stricter than the old

VisualBasic, they tried to move the entire architecture. Time will show if they will be

successful. On the other hand there are efforts to integrate Java more into the

scripting world. There are examples of JSRs [Java Specification Request] for this,

like Jithon or Groovy. These are implementations of scripting languages inside the

JVM [Java Virtual Machine]. Or there are some starting points in Cocoon where

there is Flowscript which is in JavaScript. I believe this grows together more and

more so the differences between the languages won’t play a big role any longer.”

Initialisation of Open Source Projects Page 46

3.2.2. Open Source License
Next to the programming language another important decision in the beginning of an

OSP is the choice of the open source license. On the OSI (Open Source Initiative)

website alone there are 58 different open source licenses46 so the range is wide. The

statements of the interviewees show the various considerations about the license they

have taken for their own OSP or their opinions about the licenses of other projects.

Hinderink recommends to consider the choice of the open source license very care-

fully because later on it becomes difficult to change without losses: “One important

thing in the beginning is to think about what license to take. It’s not good to do that

in a haste. You have to consider precisely what kind of contribution should come

from the community, where do I want to be able to control things and where shall the

forces play freely. A license can communicate and organize this to some degree. You

can write your own or you can take an existing one certified by the FSF. [...] The

problem is once you’ve decided e.g. for the GPL and later you change to something

like the Zope License, many community members might get angry about it and feel

exploited by the central company.”

Rothfuss explains how the GPL influences community building and that the Apache

License might be a reason why only few contributions are returned to the project: “I

believe for smaller projects the GPL is not bad because it would generate a bad

mood if somebody just took the code and didn’t return anything. The GPL sort of

forces community building for legal reasons because people have to give back their

code changes of GPL projects. That’s different with the Apache License. Somewhat

exaggerated, GPL communities are sort of forced communities and Apache

communities are voluntary ones.47 There are many companies that use Apache code

but never return anything. So in an Apache project it’s more difficult to get the

people to return their code back into the project because you can’t use legal means.

So you must find other ways to persuade them to contribute their development work,

for example by offering them to maintain their own fork or by convincing them of

46 URL: http://opensource.org/licenses/ (2005-02-09)

47 In the OSI draft “Licensing HOWTO” Raymond explains in detail how copyleft licenses like the

GPL influence community building compared to the non-copyleft licenses like the Apache Soft-

ware License. URL: http://www.catb.org/~esr/Licensing-HOWTO.html (2005-02-22)

Initialisation of Open Source Projects Page 47

their contribution to the good reputation of the project. But if you want larger

companies to adopt an open source project the GPL is not the right thing. We

worked with customers who explicitly didn’t allow the use of the GPL or LGPL

because they were afraid of the loss of control over their intellectual property. If you

want your software to be used as widely as possible you have to publish it under the

Apache License.” According to Rothfuss the GPL is not suitable for business use : “I

believe it’s more difficult to build a business upon GPL code because the easiest way

to make money with open source software is to keep the changes for yourself.”

Delacrétaz confirms the freedom given by the Apache License which may lead to

greater business opportunities: “To simplify, most everything is allowed with Apache

licensed code as long as credit is given to the Apache Software Foundation. It’s a

very open license; you can even sell your software. But you have to mention that the

code comes from the Apache Software Foundation. That’s all. [...] Having a GPL or

LGPL license would make a big difference, BSD not as much. The ASF license is

friendly to companies so they can earn money with it.”

Kupu has its own, brief open source license in reliance on the BSD license. The pop-

ularity and the freedom of this license were the main reasons why the core developers

decided to go away from the Zope license: “That’s when we decided to change the

license to a better known open source license. So it’s now BSD style rather than the

Zope Public License it used to be. [...] Zope Public License, it’s liberal and all that

but it’s not too well known. So if people hear Zope Public License... We wanted to

get rid of the association between of what is now called Kupu and Zope because

Epoz used to be a Zope only thing and at that point we already decided that we

wanted to have it working - because it was quite easy to get it working - on different

systems. So that’s why we decided to get rid of the ZPL and to put in a plain one, a

better known one. It came to a C license. It’s also easier for instance for the project

we’re working on at Infrae, Silva. It’s also to be a D license so it cannot use

something like the GPL, it has to be something more broad. BSD is just very plain

and simple.”

Concerning the GPL, collaboration in such projects has to be coordinated well to

really benefit from the power of the community as Hinderink experienced: “The

licenses organize at different levels. For example the GPL controls only few things

Initialisation of Open Source Projects Page 48

so there must be other instruments installed to enable collaboration. All the

marketing advantages of open source software also have their price. The widely

distributed development bears the risk that contributions can’t be put together again

or that powers fritter away. So it’s important to think about collaboration and

control - which in the end is the construction plan of a community.”

A quite different strategy is followed by the two companies eZ systems and obinary

that both keep the copyright of their OSP. Technically eZ publish is one software

only but it is available under a dual licensing model: two different licenses, one that

allows free distribution and use and the other being a proprietary one:48 “I think we

and MySQL are about in the same situation because we have the full copyright of the

software. As an external developer you can’t say I want to join the project and

change this and that, because we do have all the copyright, because we have the dual

licensing policy. This can be a disadvantage. Still we have external developers work-

ing on eZ publish as well but then they have to give the copyright to us.” Although

obinary doesn’t follow the dual licensing strategy external developers still have to

sign a committer’s agreement as Kraft explains: “Until they can commit on their own

they have to send us patches after signing some committer’s license agreement. This

is important for us since we want to keep the possibility to change the license. In

general we had a lot of licensing questions lately, it’s a very complex topic and

unfortunately there are only few people who really know about it thoroughly. Simply

said we are sort of afraid that if we took an Apache license someone could just take

our project away.” In the TYPO3 project, too, efforts to receive legal support only

resulted in new question about licensing issues: “For every license there are

questions. Strangely we get a lot of questions about the GPL and discussions. Once

we tried to answer them with the help of a lawyer’s office in Munich who gave a lot

of responses. But this really had the opposite effect because afterwards there were

even more questions about legal issues. It’s just difficult for most of the people to

think in these juridical terms - which is just normal.”

Concerning the influence of the open source license on user attraction of the OSP

Hinderink can’t observe clear tendencies although he always assumed them to be

present: “I can’t really judge it. I always thought it has consequences if somebody

48 See Välimäki (2003), p. 6

Initialisation of Open Source Projects Page 49

chooses the GPL compared to somebody writing his own license. Users would think

there must be something strange about the project if it has its own license. But I

think I was wrong. Most people actually using open source software are developers

so they just get the code of the software and that’s it. They don’t care at all what’s

written in the licenses. There are cases where the license is very restrictive but these

usually aren’t real open source licenses either. Jahira is such an example. I believe

if you use it commercially then a licensing fee has to be paid. I wouldn’t call that an

open source license because it’s a handicap for distribution, no doubt. But with GPL

it doesn’t matter. Everybody knows it. If you take an Apache license or write your

own one like Zope or Apple doesn’t have a large effect on the spreading of the soft-

ware. I always thought it would be different but I can’t see the effect now.“ Yet be-

fore deciding for one license Hinderink recommends OSP initiators should inform

themselves very well about those available and not just choose one for popularity

reasons only: “These are all topics you have to be aware of. It’s not just done saying

‘I’ll put a GPL sticker on it and then you can do what you want.’ I believe it’s good

to look at other licenses, even self-written ones - even if in some case the FSF (Free

Software Foundation) doesn’t accept the license. In the end people don’t care much

about the FSF. They just get the software no matter under what open source

license.”

3.2.3. Great Initial Source Code
There has to be some source code available when starting a new project as Rothfuss

explains: “It’s always better if there is already code available instead of just ideas.

In SourceForge there are many ideas that never catch on. If some code is already

available it’s much easier to find people because usually nobody has time to study

ideas and plans. You can’t submit patches for ideas. There are so many other things

to do, so it must be attractive.”

So to what degree should the software be developed to successfully initiate the pro-

ject? Raymond states the most important thing is the visibility of the project’s poten-

tial: “When you start community-building, what you need to be able to present is a

‘plausible promise’. Your program doesn’t have to work particularly well. It can be

crude, buggy, incomplete, and poorly documented. What it must not fail to do is

convince potential co- developers that it can be evolved into something really neat in

Initialisation of Open Source Projects Page 50

the foreseeable future.” 49 Bühlmann’s first contact with Plone was exactly like this:

“Quite soon the first release was made available. I downloaded it but found it was

unusable because it was way too slow. But I realized the potential behind it.” Still

the source code should be of a reasonably good quality for publication as he adds:

“You should publish a software only when it’s quality is sufficient.” Apparently,

Magnolia was of very high quality when it was brought online in 2003 so the devel-

opment team received a lot of positive feedback from the beginning: “Astonishingly

there are many people who started working with Magnolia release one and were

immediately amazed by the beauty of the code.” Although the source code can be

modified at any point during the life of an OSP it is still essential to put enough effort

into the architecture and create a sophisticated API design as Hinderink recommends:

“One other thing that should be thought of in the beginning is the basic API. I don’t

know of projects that didn’t loose people when they did major changes in the API.

For example imagemagick is such an example. It’s a great software but the history of

the interface is weird so they’ve got a bad image from that.” With TYPO3 the wealth

of features it had already in the beginning was another reason for its successful start,

since the software could be applied directly to new projects: “I believe it was the

sophisticated user interface and the availability of a large range of functionality like

a simple address book and a small shopping system. There were about ten plugins

that came along with the system. Compared to other PHP projects at that time the

code quality was very high. Maybe the worst example is PHPNuke which started out

small but many people joined and then control got lost. [...] TYPO3 was different

because Kasper had already prepared a lot before publishing it. It was much more

complete than other PHP projects.”

3.2.4. Public Demand
As in other areas of economics it is very difficult to anticipate the demand for a cer-

tain software product. There remains a large amount of luck of doing the right thing

at the right time. Wesdorp summarizes this effect: “It’s so hard to say what people

find interesting. That’s one of the things with open source, you can find something

interesting yourself and you may have a lot of benefit from it. But if other people

don’t find it interesting you’ll not find any developers. I don’t know, it’s really hard

to say. It’s also something dependent on trends. It’s very hard to say if a project is

49 See Raymond (1999), p. 47

Initialisation of Open Source Projects Page 51

going to be successful or not.” Bühlmann, too, believes the success of an OSP re-

mains unpredictable since it’s mostly luck to hit the right moment for publication:

“It’s difficult to say when is the right moment - it might be always and never. You

need a lot of luck and the right momentum. It’s as in soccer when Greece won the

European Cup 2004: nobody would have guessed it. This can also happen in the

open source area when the right momentum is present and the right people join the

project and talk about it.” As mentioned the right people need to be interested in the

project so a large user basis is positive for community building as Kraft explains: “I

believe a community builds around a project when it’s interesting enough and many

people are going to use it.”

One important aspect is to estimate the required level of skill of the OSP’s audience.

Some projects are intended for users who have little programming skills, others like

Kupu (“There are usually only developers, hardly any users.”) and Cocoon are

rather for experienced software developers. Delacrétaz gives an example concerning

documentation: “Bad documentation is not that bad for Cocoon because we agreed

Cocoon isn’t a toy for ‘Joe User’ but a tool for developers. Developers can be very

productive with Cocoon but there is a lot of experience necessary because of its

combination of various tools.” He has also noted different types of communities. Not

many code contributions can be expected from a pure user community. The Cocoon

community is different because people who intensively use Cocoon have a large

knowledge of the software and thus can participate in further development quickly:

“Cocoon is really a tool for developers. Usually after some months they get into the

code and so they can also help to contribute. This is a big advantage of the project.

The users of Cocoon must have almost the same competences as the developers

which means they can quickly change from users to developers. In other open source

projects that’s not the case. For example I started Jfor some years ago, an XML

converter to RTF, Rich Text Format, for word processors. There the user

competences vary a lot. Users just want to generate documents so many of them

don’t know Java and thus can’t help with the code. After several months there still

was no community. It was much more difficult to grow a community because the

people were different from those in Cocoon.”

Initialisation of Open Source Projects Page 52

Keeping an eye on the market of the specific software category may also help to find

the right moment for initialisation according to Rothfuss: “It’s difficult to find a

niche today. [...] Long ago I’ve realized that there is a ‘time to market’ for every

product, some sort of a time window where there is a chance to succeed. After this

there will be other projects that do similar things and bind their community to

them.” Changes in the CMS market were essential for the success of eZ publish: “It

has much to do with how we made the software but also has something to do with the

timing. [...] When we started in 1999/2000 everybody went bankrupt. That’s the time

when people look for alternative solutions, when they can’t afford a high end

solution. Open source is just a natural place to look because the price tag is zero.”

3.2.5. Degree of Novelty
The range of innovation in OSPs goes from replication of existing software architec-

tures50 to radical innovations called de novo design.51 The Cocoon framework presen-

ted a large degree of innovation in 1998 when it was the only XML publishing frame-

work available. Delacrétaz states: “There were already solutions around for that

kind of job but they were not sufficiently open or mature enough. So the concept of

Cocoon was indeed innovative at the time.”

Nevertheless, even OSPs that are a replication of already available software always

include some amount of new concepts and features. The famous open source project

Linux isn’t a radical innovation52 yet in many aspects the most successful open

source project of all time. Similarly, Plone wasn’t the first Zope application frame-

work at the time of publication but it became a success nevertheless: “There was

another product called CPS, Collaboration Portal Server of Nuxeon company from

France. They did the same, develop their own portal based on CMF. But Plone,

apparently, was better in the initial phase so more people got into Plone than into

CPS.” Kupu is only one of many available open source WYSIWYG editors, but it

features innovative properties. As Wesdorp states, Kupu applies modern properties of

browsers: “And what we try to do is leveraging modern techniques of browsers.

Rather than using the old style JavaScript coding we are trying to use new features

50 E.g. Linus Torvalds took the Unix operating system as template architecture for Linux, see von

Krogh/Spaet/Lakhani (2003), p. 1218

51 See von Krogh/Spaet/Lakhani (2003), p. 1219

52 Raymond (1999), p. 29

Initialisation of Open Source Projects Page 53

of the JavaScript language and also newer features of browsers to achieve a better

user experience. For instance the PUT, we use HTTP PUT rather than HTTP POST.

You can use POST, too, if you want to but that’s definitively something that appeals

to any user.” These novelties are recognized by the contributors of the project: “A

lot of people are impressed by what Kupu does. And I still get a lot of feedback from

people saying ‘Wow, I didn’t know this was even possible in JavaScript!’ I think the

feedback is generally very good.” Implementation of new standards as in Magnolia is

another way of innovativeness but also bears risks: “Very early we started with this

JSR-170 standard that defines how CMS have to access data in the content

repository. At that time we didn’t know if it would be published and if it would ever

get any importance. Indeed there were people who found us because of our JSR-170

compliance so, apparently, we are interesting for a certain group of people. [...] We

did all the effort, the GUI, the JSR-170 stuff and marketing because there wasn’t

anything like that at the time.”

3.2.6. Applicability
The broader the OSP can be applied, the larger is the potential user community of the

software. Content management systems e.g. are one software category that can be

used in many different ways: “In addition the possibility to create your own

templates is important for the community. That’s how many different people got

involved with the system. [...] People work with TYPO3 in many different ways.

There are designers who create the templates, developers who write TypoScript only

or some newbies who just do a mapping onto HTML pages. This is a good platform

for people with different working methods. TYPO3 can be used in many different

ways. Some use it to prepare printing, others manage the website of their

association. This variety is very important for the community.” Also Kraft intends to

offer Magnolia for different user groups with the application of specific extensions:

“It’s possible to extend Magnolia for a special interest group like ‘Magnolia for

Group Collaboration’ and also as a commercial solution.”

Usually there are design and platform decisions that broaden the applicability of the

OSP. When Kupu was formed from the Zope based Epoz project Wesdorp and the

other developers favoured such changes: “It wasn’t very configurable and it was

Zope-only. This was something we decided wasn’t a good marketing aspect of the

Initialisation of Open Source Projects Page 54

editor so we decided to change that, too.” In eZ publish the initiators planned to

write a framework from the start on: “From the beginning we have programmed eZ

publish as a general CMS, not for one customer only but as general as possible. [...]

We wanted to make a web application framework to produce general web

applications and we wanted to have the CMS on top of that.” So the advantage of

frameworks like Cocoon is their extremely broad area of use as Delacrétaz explains:

“The core of Cocoon itself is very small but it includes lots of tools and libraries. So

for someone Cocoon might only be a system to publish XML to HTML, another one

builds a large web application with databases, XML feeds, including multi channel

publishing to web, WAP, PDF, images and so on.” This leads to a broad community:

“I think the result will be a very open community. There are very active people in the

team who work with very different technologies although they all work with Cocoon.

We must be able to communicate because we have to agree on certain points. This is

interesting because the people are very different and they are not doing the same

work. There is a broad application spectrum of Cocoon so there is also a broad

spectrum of community members.”

3.2.7. Level of Communication
As shown above the leadership skill communicativeness is in general a very import-

ant quality of OSP leaders. Since there were several explicit references in the inter-

views concerning interaction between developers during the start-up phase of an OSP

a high level of communication in the beginning can be assumed to have a strong pos-

itive influence on community building.

Starting on the physical level, the core developers of Kupu met personally in the be-

ginning: “For Paul Everitt and me it has been nice to discuss some issues one-to-

one, just for the start-up.” Such synchronous communication can also be accom-

plished over IRC as was necessary in Plone to compensate the lack of documenta-

tion: “Most important is the IRC channel. This was one of the most important

elements in the beginning so people could talk to each other directly. [...] This was

very important in the beginning of the project when there was not yet much

documentation but people received help in the chat.” To initiate discussions on the

mailing list one has to be very active in the beginning before community members

also start helping with the mails as Kraft experienced: “You need a certain

Initialisation of Open Source Projects Page 55

momentum which you only achieve if you’re active in the beginning. As soon as you

get a certain number of people involved they will also start answering emails.” Al-

though documentation might not be the most interesting task for the OSP initiators it

can essentially influence community building as Rothfuss believes: “For example I’d

invest a lot of time into documentation although you have to write it over and over

again. It’s something I never really did, but I believe you’d be astonished what

influence good documentation can have. Documentation just lowers the entry bar

and gives others the chance to collaborate. Although nobody likes writing

documentation it probably results in a better ‘return on investment’.” What Rothfuss

states as assumptions Kasper successfully executed in the beginning of TYPO3:

“Documentation was an important topic from the beginning. Kasper invested a lot of

his time into documentation which is definitely unusual for a developer.”

Promotion of Community Building Page 56

4. Promotion of Community Building
While the chapter above treats the important aspects of the initialisation phase of an

OSP this section is about further improving the “nutritive soil” for community build-

ing. Different ways in which the interviewees propose to influence the evolution of

the community or actually did so by certain actions are discussed. To group the inter-

view answers and pave the ground for a promotion framework they have been cat-

egorized into a two dimensional structure shown in table 3.

↓ Subject Level → Recruiting Collaboration Production

Sp
an

ni
ng

 S
ub

je
ct

s

Modularity Chapter 4.1.1. Chapter 4.1.2. Chapter 4.1.3.
Documentation Chapter 4.2.1. Chapter 4.2.2. Chapter 4.2.3.

Release Management Chapter 4.3.1. Chapter 4.3.2. Chapter 4.3.3.
Collaboration Platform Chapter 4.4.1. Chapter 4.4.2. Chapter 4.4.3.

Physical Meetings Chapter 4.5.1. Chapter 4.5.2. Chapter 4.5.3.
Foundation Chapter 4.6.1. Chapter 4.6.2. Chapter 4.6.3.

Internationalisation Chapter 4.7.1. Chapter 4.7.2. Chapter 4.7.3.

Le
ve

l S
pe

ci
fic

 S
ub

je
ct

s

Spreading the Word Chapter 4.8.1.
Credit System Chapter 4.8.2.

Communication Channels Chapter 4.9.1.
Community Structure Chapter 4.9.2.

Task List Chapter 4.9.3.
Code and Feature Quality Chapter 4.10.1.

User Interface Design Chapter 4.10.2.
Installation Chapter 4.10.3.

Table 3: Overview of the Subject-Level Promotion Matrix of Community Building

The subjects in community building form the rows of the table and are briefly de-

scribed in each chapter. They represent 15 often encountered topics in OSPs and are

split into two groups. The “spanning subjects” have an influence on all three levels of

community building. Consequently they are the most important issues to be treated.

The “level specific subjects” affect one of the three levels only and thus are more

specific topics.

Promotion of Community Building Page 57

There are three levels of community building which form the columns of the matrix:

recruiting, collaboration and production. Activities on the recruiting level intend to

motivate new contributors to join the community and participate in the collaboration.

Therefore topics like attractiveness of the OSP, distribution, marketing and external

communication in general are discussed. Interventions on the collaboration level

show how internal processes can be improved focussing on internal communication,

knowledge transfer, human relationships, organisation and coordination. Actions on

the production level concern the progress of the software itself describing how the

source code, the API and the user documentation are improved.

4.1. Modularity
In software engineering it is well-known that modularity increases flexibility and

comprehensibility of a system allowing a reduction in development time.53 This holds

especially for OSPs where developers usually work together only virtually. Well

defined interfaces of the software parts are necessary to ensure smooth interaction of

the contributions of all the developers. Modularization also has a high impact on

community building as will be shown in the following chapters.

4.1.1. Recruiting
Since it’s easier to write short, well-defined modules, also called extensions or plug-

ins, modularity of the software lowers the entrance barrier thus making it easier to re-

cruit new contributors. Writing new extensions is the main activity of the TYPO3

community. Hinderink has no doubts about that: “[Most contributions are] definitely

in the extensions. There were some donations but most of the activity is in the

extension area.” Kraft intends to achieve the same in Magnolia and build a com-

munity that writes new extensions for the content management system: “With the

module mechanism you can extend Magnolia so it’s possible to build a large

community in the extension area. That makes more sense than having people in the

core since it’s quite finished and you would have to know all about it. It’s the same

as in other CMS like Communicate of Day or in TYPO3.” Answering the question

about architectural aspects which might promote community building he confirms

again: “Certainly the module idea. When this was introduced into the TYPO3 project

the community actually exploded.” Also Wesdorp is convinced of the importance of

53 See Parnas (1970), p. 1053

Promotion of Community Building Page 58

plug-in architecture so he answers concerning its influence on community building:

“I think it can be very important. Right now we unfortunately don’t focus on plug-ins

that much. But I’m trying to shift from using the plug-in architecture not only to add

core features but also trying to turn the core features into plug-ins and try to exploit

the plug-in architecture by making it easier to add third party plug-ins and

extensions.”

So Hinderink explains the advantage of developing of new features for TYPO3:

“Being able to add new functionality at this level without touching the kernel and

also implementing very easily - with the help of the quick starter - is very unique. For

developers and agencies the very simple way of customizing is actually the only

possibility to distinguish themselves because many use TYPO3 today.” In spite of the

huge functionality of TYPO3 it is very easy writing new extensions with help of the

extension manager: “Then you’re able to upload your personal extension into the

TYPO3 extension repository. There is no control at all, the only limit is the size of

the file and even this you can override by asking Kasper or Robert Lemke,

responsible for typo3.org, to increase the limit of your extension. So the doorstep is

very low, everyone can participate. And you can actually do almost anything. Like

extending core classes or overwriting functionalities. The only difference is it’s done

on a higher level so nothing will be gone or can be destroyed.” Also in Cocoon it is

the goal to keep adding new functionality simple as Delacrétaz is convinced: “It’s

quite simple to write such a Block so people can participate easily. [...] So since Co-

coon itself is very modular it’s quite easy for people to contribute.”

The integration of external developers into the OSP is the final goal. Farstad explains

which technical properties of eZ publish promote community building: “As I

mentioned the plug-ins and the extension system are of course part of it. In about 20

or 30 lines of PHP code you have an extension to eZ publish like for example a

template operator or a small module. This promotes third-party involvement in the

community.” Delacrétaz confirms the positive influence of modularization in Co-

coon, too, since in this way many different developers and companies can use the

publishing framework for their specific needs.

Promotion of Community Building Page 59

4.1.2. Collaboration
One major advantage of extension development is the possibility of many people

working independently on the code relieving the core developers as Hinderink tells:

“Of course the single person project does have disadvantages. A major one is the

non-scalability of Kasper - adopted from the Linux kernel community ’Linus doesn’t

scale.’ The creation of the extension repository was one attempt to decrease the im-

portance of this problem so Kasper can now concentrate on the central issues

again.” In addition to the freedom of choice of topic the extension developers even

have the power to invent new features: “I’m sure that if for some reason Kasper

wouldn’t be able to do something really necessary in the kernel somebody will do it

as an extension. The advantage is something can be done very quickly. Of course

that’s not always good since resources might get lost or because people don’t want

to discuss or stay with the half finished solution. But for customer projects and short

term solutions it’s ideal to work like that.” In the eZ publish project, too, different

kinds of contributions are possible: “We call it contributions because we have many

different kinds of extensions like workflows, template extensions, data types and

applications. So we have like different categories. We have several extensions in our

contributions area. There all the extensions get their own page with comments and

descriptions and of course again the name of the author so he gets the credit.”

Analysing source code contributions (commits) a high degree of developer special-

isation on particular modules was found in the Freenet project.54 Similarly, the kernel

extensions of TYPO3 are all maintained by certain persons as Hinderink knows:

“Extensions very close to the kernel are mostly realized by people in the the sphere

around Kasper. For example the workflow system is done by Christian Jul Jensen, a

close friend of Kasper. There are others who offered to help, for example Martin

Kutschker who wanted to take care of the typing system, especially UTF-8-compatib-

ility throughout. He got active in several discussions on the developer list and pro-

posed solutions. So Kasper showed him the classes involved and allowed him to take

over. [...] Nobody does everything. Actually the only one who is active in all the

parts is Kasper. All the others have found a certain topic and care about that.” Also

in Plone the community members are often specialised as Bühlmann noticed: “Then

there are many others who know a lot about one specific area like user management

54 See von Krogh/Spaet/Lakhani (2003), p. 1230

Promotion of Community Building Page 60

or content types.” And Wesdorp experienced the natural evolution of specialisation

in Kupu: “Everyone is allowed to work on every part but as usual everyone has his

own favourite parts to work on and some stuff he benefits from.”

The advantage of easil developing new modules can turn into a disadvantage when

there is a large number of extension commits like in TYPO3: “There’s an issue

about collaboration. For example if you see how many new extensions there are and

how small their differences are you can see how important collaboration actually

would be. Not to program five weak ones but to do a single one and plan and discuss

what it’s features shall be. It’s something that has to be improved. [...] So such an

extension repository gets spammed. For example recently I saw somebody who

definitively meant it positively in his enthusiasm. He took about ten extensions,

modified them minimally, changed their names and icons and committed them again.

So these ten extensions weren’t necessary, it was rather a finger practice which

should not have been published.” Due to his long-time experience in the TYPO3

community Hinderink knows advice concerning quality assurance of OSP exten-

sions: “These are issues a community has to solve. So that’s the reason for the

planned extension review process. There shall be a group of people who’ll do a

review with strong criteria and rate the extensions. Additionally there shall be a user

rating so there are two complementary elements which together form some sort of a

quality seal. That’s the response to the problem. But it’s not easy to implement

because highly qualified programmers are necessary for the rating and these guys

usually have better things to do than reviewing other peoples’ code.”

A modular architecture can be used in many different ways. This has the disadvant-

age of nonconformity of the manuals as Delacrétaz describes the situation in Cocoon:

“For example if one writes a tutorial it always goes in a certain direction. So the

next one says ‘Oh but I don’t use Cocoon in this way, I can’t really use this tutorial.’

We have to find a solution and I also think there will be one. For example a book

about a certain case of usage describing exactly how this works and so on - always

in context with the reference documentation of the components.” Another advice for

solving this issue is given by Hinderink: “So in typo3.org there is a documentation

repository with all the files, maybe a couple hundred. There are not only those by

Kasper but also by other people, mostly extension developers. You can and should

Promotion of Community Building Page 61

deliver a documentation with each extension based upon an OpenOffice template.

These are uploaded into the repository and transferred into HTML pages and thus a

small manual website is created. Additionally the page can be viewed as PDF or

again as an OpenOffice document.”

4.1.3. Production
The basic idea of modularization is to simplify the complex structure of the source

code by breaking it down into well manageable parts. Rothfuss sees this advantage

and mentions concerning the influence of extensibility of projects: “I believe it

[extensibility] is important. If you abstract it somewhat, it’s a modularization of the

code. It’s one way for a community to grow. PHP for example is an Apache module.

Just imagine PHP had to be developed inside the Apache Web Server - unrealistic!

The same holds for the Linux kernel and its drivers for new hardware.

Modularization is good because it makes large projects tightly structured.” Kupu

uses the principle of modularization even in the core functionality so everything is

clearly arranged and ready for use by other developers as Wesdorp explains: “There

is also a set of tools which are basically plug-ins. Kupu works with those plug-ins

even for the core tools. The basic tool set is already done by using the plug-in

architecture. And then there is a set of helper classes to control the selection for

instance and a large set of browser abstractions because there are still a lot of

browser differences.”

The positive consequence of such an architecture is that extensions can be kept small

as in Plone: “No more than a few lines of code are needed to solve a problem. We

seldom write a module where we need more than 100 lines of code. Everything is

connected with the framework so in the end you don’t need to program that much.”

Also the software remains flexible because only those extensions are developed that

are really needed: “We have the clear aim to keep the core of Cocoon as small as

possible. Everything else is modular. This is like e.g. Linux where the kernel itself is

not so big but there are many utilities and classes. Cocoon goes in the same

direction, just acting as a kernel and then everyone can do with it what he wants.”

In large software projects the integration of other OSPs as modules is fundamental so

Cocoon offers this possibility: “Then there are the Blocks, modular parts of

functionality. They are completely modular so everyone can write a new one. [...]

Promotion of Community Building Page 62

For example the PDF formatting is one Block. It uses the external component FOP

(Formatting Object Project). So the Block is actually some Java code that integrates

FOP into Cocoon. This Block consists of only a few lines of code but you still have to

write it for the integration of the different properties and so on.” While functionality

is important, in Magnolia also the GUI is relevant so newly added extensions shall be

seamlessly integrated into the core system: “Additionally we are planning to post

projects that describe possible extensions of Magnolia. In release 2 we offer these

GUI controls that allow third party developers to write extensions in the same look

and feel of the application. Later on we want to write sort of an Extension Manager

that lets you install the Magnolia extensions with one click just by accessing some

sort of an extension repository.” And Wesdorp even suggests the separate release of

such plug-ins: “Right now I think we still do too much in the core which is not that

much different from actually writing the plug-in. It would be quite easy to grab the

stuff from the core and release it separately. Maybe we do that at one point because

it’s nice that you don’t have to care too much about all kinds of extensions and like

niche areas if you do a core release. So it makes maintenance easier for sure.”

4.2. Documentation
This topic includes all the various aspects of documentation in relation to an OSP. It

considers all documentation artefacts like reference manuals, tutorials, feature lists,

guidelines and end user documentation as well as the process of creating and struc-

turing these informations.

4.2.1. Recruiting
Documentation is a very important factor for the recruiting aspect of community

building. Hinderink mentions this influence in TYPO3 where a large amount of doc-

umentation is available: “The documentation always had a large impact on com-

munity building. TYPO3 has documentation above average. And there was always

lots of discussion about the quality. I believe it’s quite high although there isn’t a

guide or a document with a general overview of all the components so far.” Espe-

cially to start using an OSP certain basic documentation needs to be available as

Wechner says about Lenya: “Also there is documentation for the integrators, how to

implement the CMS and so on.” Kraft confirms this since he created the introductory

documentation for Magnolia: “I didn’t write any code of Magnolia but wrote the

Promotion of Community Building Page 63

Template Quick Starter that describes how to write templates for Magnolia. It’s not

difficult at all, just making screen shots and describing how to create new users and

so on. But it’s still work and somebody has to do it.” Also Bühlmann knows the high

relevance of documentation to introduce developers into the OSP: „Most important

is the Plone manual describing, e.g. how to create new content types and so on.“

Nevertheless, Plone is far from being completely documented compared to its pro-

gramming language Python and to the application server Zope: “Python is very well

documented. There are several good books about it and it’s not so difficult to learn.

For Zope there are also a couple of books. Plone is the least documented of these

three. There are large efforts to document Plone well, too. But it’s a main problem

and even a miracle that Plone has advanced that far without being well docu-

mented.”

Although a large amount of documentation is available in TYPO3 people still ask

many questions. It might to be due to the lack of focussing on unique documentation

artefacts so people can’t find the information they are looking for, Hinderink reasons:

“And you must be aware even in a project like TYPO3 that has an enormous amount

of documentation, the questions are still asked. So you have to think about what you

did wrong. We found out it was probably a bad idea not to fix say four main docu-

ments, each of them covering one perspective. One would be the installation manual,

another one about template programming, thirdly one about administration and con-

figuration, a fourth one about extension programming and maybe a few more. So for

every important area there should be one central document. We should have done

this in advance, thinking about what parts of knowledge are necessary to work with

TYPO3, making one single document for each, and that’s it. All the tutorials and ex-

tras can’t replace a manual, it’s just something different.”

Next to the introductory function of documentation the creation process of such ma-

terial can also be a way to recruit new contributors and eventually new developers.

To Farstad this kind of contribution offers a possibility for non-developers to parti-

cipate in the OSP: “That is a point which helps building the community because then

people can contribute without even writing code.” Delacrétaz himself experienced

this in Cocoon: “Actually I got invited into the project because I started working on

the documentation.” And Bühlmann remembers the initialisation phase of Plone

Promotion of Community Building Page 64

where it was open to anybody to work on the documentation: “From the beginning

we had a Plone website on plone.org that was very open. For example you could log

in and write some docu. There were no restrictions for persons who wanted to

contribute.”

On the other hand, documentation can have the opposite effect when it acts as a re-

cruiting filter letting pass only highly ambitious contributors possessing the appropri-

ate skill set. So the positive aspect of a lack of documentation is to get very strong

and self-motivated developers into the OSP community. Delacrétaz reflects about

this when speaking of the documentation of Cocoon: “Bad documentation is not that

bad for Cocoon because we agreed Cocoon isn’t a toy for ‘Joe User’ but a tool for

developers. Developers can be very productive with Cocoon but there is a lot of ex-

perience necessary because of its combination of various tools. [...] So in that sense

we thought it’s better to have people fail early. People should realize soon if it’s a

useful tool for them or not. In the current situation without much introductory

documentation there are people who say ‘Uff that’s really nothing for me.’ Those

that proceed really understand the code and for them Cocoon definitely fits. I

wouldn’t say that’s ideal but it’s not that bad because Cocoon isn’t a tool for people

who for example did ColdFusion only and don’t know anything else. Or a bit of PHP

and HTML but without real programming experience. Cocoon isn’t for those people.

From this perspective it’s good that the level is high.”

4.2.2. Collaboration
The availability of information alone is not sufficient. Rather a well structured form

of the documentation is necessary to really serve the audience according to

Hinderink: “Concerning documentation I believe you have to take it really serious as

an important task. You shouldn’t think the mailing list archive is enough. The know-

ledge in there must be transferred into FAQs, must be rephrased and made search-

able. Then you see the weaknesses of your documentation.” Another weakness in

OSPs is the common incompleteness of documentation material as Delacrétaz ob-

served in Cocoon when he started to work on the Wiki: “Since that time we talk a lot

about documentation. Our documentation isn’t good compared to what you can do

with Cocoon. We are not proud about that, it’s a real problem.”

Promotion of Community Building Page 65

The general reason for this is that developers don’t like writing documentation as

Kraft experienced: “Open source projects usually have bad documentation because

developers don’t like to write documentation but want to write cool code.” But what

is the underlying reason for this? Delacrétaz gives a revealing explanation: “Also e.g.

the documentation is something where we need people. They’re harder to find than

people writing code. Because usually if people need code they just write it. So when

I’m working on some project and need a component then I’m just going to code it. Of

course I also contribute it to Cocoon and so it and also my project get better. Maybe

somebody even sees my code and thinks ‘Oh I can make that better.’ so he improves

my code. With documentation it’s different. Usually if somebody writes documenta-

tion it’s useless for him afterwards. He understands it now and doesn’t need it any

more for himself. That’s why it’s much more difficult to find people who invest per-

sonal time into the documentation. [...] When I write some code I can use it

afterwards. But when I write a documentation I can’t use it any more because I’ve

now learned it, so that’s it. So there’s a difficulty.”

Having localized the cause of the problem, Delacrétaz recommends to install incent-

ives for writing documentation to improve collaboration and compensation in the

community: “Many open source projects that have good documentation got it

sponsored or the project itself is sponsored so they can invest money into the docu-

mentation. The authors then earn money for writing the documentation. I don’t think

many people do contribute to open source projects just for fun. People are willing to

give but also want to get something in return. So here you see it very clearly. I’ve no

problem with that at all; one just has to find a balance.” Farstad found a way for

writers of documentation to present themselves and receive credit for their contribu-

tions: “Let’s take the documentation for example because that is where we get most

of the contributions. If you go into the documentation and click on a page you’ll have

on the right hand side a list of all the users that have contributed to that page.”

Another advantage of a high reputation as writer of documentation is the possibility

to become an author of literature about the OSP as Delacrétaz notes: “What you

might get from writing documentation is a good reputation as writer, which might

lead to writing magazine articles. Or as the author of the project documentation it

might be interesting to write a book. For the project it’s definitively positive to have

Promotion of Community Building Page 66

good documentation but for the writers it might be difficult to find incentives.” In-

deed, Hinderink received the opportunity to publish a book about TYPO3 but also

mentions the financial incentive was not the reason why he invested that much time

into this work: “There were several efforts by community members and as it is typic-

al in open source projects people also tried to make money out of it. So far two books

have been published and two more will appear in the beginning of next year. And I

believe there will be more in the next years because there is no publisher who

doesn’t want to have a book about TYPO3. We actually get mails from publishers

who offer this to us - even we as authors are asked if we didn’t want to write another

book for another publisher. The one we wrote is quite successful. The feedback of the

community and agencies is generally positive and they also believe it helps the pro-

ject. And it’s good because this was the reason we did it - you don’t earn money with

that.”

Another way to improve documentation is to call for donations and pay community

members to write complete and updated documentation as Delacrétaz suggests for

the Cocoon community: “On the other hand writing a book is very tough because it

remains a niche market and you can’t hope to sell 10’000 books about Cocoon

today. Economically it’s difficult so we are looking for cheap ways to publish books

or do professional documentation in some other form. Today’s situation isn’t

satisfactory. Just a couple of weeks ago we discussed if every user could donate CHF

100 so we could employ some people to do a professional documentation. This would

be great but it isn’t easy to organize. There must be fair play and so on.” Finally

there is the possibility of publishing educational materials originally produced for in-

ternal workshops etc.: “For example I wrote a tutorial about Cocoon for a

commercial workshop I held and after few months I contributed it to the project so

others could also use it and improve on it. This can be a model, but it was just one

case for me.”

4.2.3. Production
Detailed descriptions of the code are required to ensure its comprehensibility as base

for the continuous development of the software. Wechner is convinced of the high

importance of API documentation: “In a framework it’s very important because

developers have to know how to use the components.” So Wesdorp made sure there

Promotion of Community Building Page 67

is sufficient programming description available about Kupu: “But for developers... I

think you don’t have to be a core developer to work with Kupu. If you pick up a doc-

ument ‘About extending Kupu’ you can have something working in a couple of

hours.” TYPO3 experienced a positive impact on community building when the core

API was enriched with in-line comments of the author, Kasper Skårhøj, and further

developer documents were created: “The documentation of the core API and of the

different kinds of extension possibilities of TYPO3 had several impacts. This was im-

portant for community building. [...] And there is an ’Inside TYPO3’ document

which describes how the API works. [...] Of the references the TypoScript Reference

TSF is the most important one. It lists all the keywords of the scripting language.

This has always been a core document from which a lot of information could be

extracted.“ Nevertheless, in Kupu most documentation is still for developers so dis-

tinct knowledge about the programming language and the browser environment is ne-

cessary to be able to use the documentation as Wesdorp notices: “Yes, it’s definitely

geared towards developers so it’s not very elaborate and doesn’t explain in detail

how to do each and everything. You are obviously working in a JavaScript

environment which is really corky and there is quite a lot of stuff to be told to

actually to get something to work. And the documentation doesn’t contain any side

notes how to build something in JavaScript and so. But I think it’s decent in the

sense that it’s short and compact but it explains what you need to know.” In the end

OSP leaders have to accept that there will never be enough documentation so

Wesdorp is prepared to go on answering questions: “Yes I think it would help a bit

although I think would still be... I mean you can’t explain everything in your docu-

mentation so you’ll always get complaints from people that they don’t understand

this and that and we should have explained that in documentation.”

4.3. Release Management
Release management bundles and ships the software of an OSP and thus takes the re-

sponsibility to ensure the quality and functionality of a new version of the program

intended for public use. In this section the actions of persons in charge of this task are

discussed as well as established processes of professional release management.

Promotion of Community Building Page 68

4.3.1. Recruiting
Regular and frequent software releases are advantageous because they implicate high

activity in the community and thus progress of the OSP. This is most easily shown by

version numbering. eZ publish made use of this when it underwent major changes:

“We wanted to make a web application framework to produce general web

applications and we wanted to have the CMS on top of that. That is the eZ publish 3

series you have today. [...] Actually it has been two projects: eZ publish 1 and 2 are

the first generation, and then eZ publish 3 is the second generation which is much

more general. It’ an application development framework for web applications.” The

positive influence of regularly advancing versions is also shown by an opposite situ-

ation. Doing new releases infrequently, especially not reaching release 1.0, can demo-

tivate contributors as it did Rothfuss: “One thing that made me decide not to work

for Xaraya so much any more was that I believed the project had some sort of a

perfectionism problem. For almost two years they’re working on a release 1.0 that

hasn’t come out yet. The last mile is some sort of a death walk that never ends. [...]

And projects which seldom do a release are not viewed as healthy because from the

outside it seems like nothing happens.” On the other hand, Rothfuss adds, to release

too often alienates users since their installed software is always out of date: “So if

there is too little time between releases to develop new features or do bug fixing the

delta will be too small. Additionally, it’s hard for people who use the software

productively because they would see that their release is out of date all the time and

that they might not get any support for it any more.”

To recruit new contributors by reliable release management it is most important to

implement the contributed patches into the new releases, Hinderink is convinced: “It

[the release management] is extremely important concerning quality assurance. It

doesn’t work without him [the release manager]. Everybody could just publish

something that doesn’t work. [...] You only realize the advantage of an open source

system when all the bug fixing and other contributions of the community gets

integrated.” If contributions are not included, active users like Rothfuss will not

continue to contribute to the project and will look for another solution: “Before

PHPNuke I tried another one called PHPWebsite, I think. But this never advanced

even when I sent patches. In PostNuke there was much more going on.”

Promotion of Community Building Page 69

An additional way to involve community members in the OSP is to introduce them to

the different tasks of the release management process itself as Kraft thinks about do-

ing in the Magnolia project: “But it’s lots of work to do a new release. Just doing

some bug fixes we can solve with patches, but e.g. including new features needs some

documentation of these and description of their influence and so on. This is definitely

something that the community can do in the future, too, building the installers and so

on.”

4.3.2. Collaboration
Inside a community release management can be a hot issue so in many OSPs it is

solved in a democratic way among the committers of the project. Bühlmann states

about Plone : “Yet it [the release management] is a democratic process. The release

manager would never say ‘Hey guys, next week the release comes out!’ There are

discussions on the mailing lists until a consensus is reached.” Other projects like

TYPO3 have very clear procedures how to handle release management and how to

continue when there are errors in the software: “There are two who are responsible

for the release management, Michael Stucki from Switzerland and Ingmar Schlecht

from Hamburg. One cares about the Linux distribution and the other about the

Windows stuff. When they receive bug reports by the bug tracker they follow a

specific workflow. First they estimate the impact of the problem, whether Kasper has

to take a look at it or if it’s just a minor issue. Then a solution is proposed and if it

works they can commit the bug-fix themselves.” In Cocoon, the release management

process follows the prescription of the Apache Software Foundation as Delacrétaz

knows: “Yes, we have a release manager in the project. It’s his job to do the releases

but it’s also documented how to do that so anyone could do this, technically. In

addition, he has to sign the release digitally. A vote is required to do a release,

according to the ASF rules.” And Plone even has a specific process for including

new features: “We’ve introduced the Plone Enhancement Process. So if you want a

new feature in Plone you first have to write a so-called PLEP where you describe

what the feature has to do and how it can be realized. Today you’re no longer

allowed to implement new features in Plone directly. After you hand in the PLEP the

release management team evaluates it and then we decide in which release this

PLEP is to be implemented. [...] Everyone implemented new features and no one had

an overview any more. The features also had side effects which led to

Promotion of Community Building Page 70

dysfunctionality of the system. That was the time when companies had problems with

projects when Plone didn’t work any more because of these side effects. So it was

decided that no one is allowed to add a new feature without first writing a PLEP, a

description of the feature. In this way you could see what side effects could possibly

occur and if necessary improvements could be made in the design phase already.”

Other projects like Kupu don’t have any rules and thus follow a very unstructured re-

lease management procedure: “Usually it [the release management] is done by

Philipp and me. It’s just easy: We say one or two weeks in advance ‘Please check in

your changes, we do a branch and do a release of that branch. And that’s the

branch...’ Nothing fancy. [...] So we do have sort of a stage where there is a feature

freeze. We are not allowed to add any features unless it’s like something breaks.”

Concerning the everlasting issue of feature freeze Wechner likes the principle of re-

leases based on regular intervals: “Somebody also proposed to do regular releases,

for example every month. I like this because it’s clear when you release. [...] In 0.0.1

steps, like having Lenya 1.3.1, the next month 1.3.2 and so on.” Also Rothfuss fa-

vours this kind of release management because useless discussions and delays can be

avoided: “Mozilla and Firefox, for example, have a very good release management.

They announce the dates of their releases and tell the community that what’s in there

on these dates will be in the release and everything else will not. That’s the way to

avoid discussions about which features to include and which not. This always leads

to delays.”

In general, it is common to use different development branches as many of the

interviewees confirmed. For example in Lenya they use two main branches: “At the

moment we only do maintenance releases like bug fixing and so on. Sometimes we

also transport new functionality from the development branch to the stable branch if

it works well.”

4.3.3. Production
For Bühlmann stability of the software is very important when new features get in-

tegrated: “It’s one of the most important rules to integrate new features only if they

work completely so the architecture doesn’t change all the time. In a Subversion you

create branches, merge them again and tag them for a release, as in CVS.”

Promotion of Community Building Page 71

Another important aspect is backwards compatibility of new releases. Wechner

explains the responsibility of his company towards its customers: “Here you see the

difference between ‘hobby’ projects and those that are used in a commercial area.

You will have some dependence on your customers and can’t just say we will change

the API like that. In software engineering it happens that after a while you realize

you should have done things differently. If you are a single developer you can say,

even if others depend on it: ‘I don’t care, I want to do it my way!’ and restructure

your entire API. But if you are in a commercial environment where people build on

top of your software then you have to decide if you want that people continue to

build on your software or if you want to do your own project. [...] There is still the

possibility to create another branch. For example with Lenya we did this, one

branch which is backwards compatible and another where we try new things and

thus it isn’t backwards compatible.” In case backwards compatibility of new releases

is not possible, migration scripts are able to rewrite parts of the software to ensure

their continuous functioning: “The transition from Plone 1 to Plone 2 was a hard

task. There were migration scripts that migrated most of the code. So projects using

Plone 1 could migrate to Plone 2 without a change. It’s a very big help to be able to

migrate old applications to newer versions of the platform. For every release a

migration script is written which let’s you migrate your application to the next

higher version of Plone. For example a script migrated applications from 1.0.4 to

1.0.5 and so on. There is a function that compares the version of your Plone site to

the version of the current Plone installation. Then all the migration scripts are ap-

plied incrementally. It’s an important point not to let the community down with up-

date changes in their applications.”

Another issue which release management on the production level has to care about is

the distinction between internal and external API. As Rothfuss explains this is often

the cause of incompatibility when new releases are published: “One problem in open

source projects compared to closed source software is the difficulty to distinguish

between external and internal API. Many projects don’t define exactly which parts of

the software others shouldn’t take for granted. This makes it hard to do changes.

Developers might think of certain parts as internal features and assume nobody will

build upon them. But since people can see inside the code and if it’s not well defined

– especially in web applications where it’s difficult to distinguish – problems will

Promotion of Community Building Page 72

result.” To tackle this issue, Rothfuss advises to fix clear API policies and write in-

line documentation that indicates which parts of the API are external and which are

internal: “Some projects have a policy where they define how much time has to pass

until something is called deprecated. When these promises are kept they also get the

confidence of the users. The other step is to document with JavaDoc or PHPDoc

which methods are internal or external. The external methods are under the control

of the policy and the others are not. This is quite simple for APIs. With other things

like naming conventions or specific files it’s more difficult to prevent conflicts.”

4.4. Collaboration Platform
The collaboration platform in an OSP is the infrastructure which allows the com-

munity to interact. It supports software development by providing a version control

system, download sites of the software, issue tracking and other services. It is pos-

sible to start an OSP on one of the known collaboration platforms such as Source-

Forge where various services are available for free.

4.4.1. Recruiting
When entering the website of SourceForge the ten most active OSPs of the past week

are listed on the left hand side. This leads to a positive marketing effect giving the

OSP a high visibility. Kraft explains how the ranking can be influenced when

working a lot with the different services of SourceForge: “One big advantage is that

if you do a lot via SourceForge you can rise quickly in the rating. For example the

project Open Workflow where I’m still somewhat involved, gets into the top ten from

time to time. John who initiated the project is currently the only active community

member but he does a release and pre-release every week, writes news and so on.”

On the other hand, Hinderink notes the existence of many other collaboration

platforms and points out slowness and rigidity as main disadvantages of

SourceForge: “Well there is a lot of competition. There are also Tigris and others.

The main disadvantage of SourceForge is its slowness and the lack of customization.

It still covers a lot of the needs and also many people search there for a system.” The

Kupu project used to be managed over SourceForge but nowadays they use

Codespeak, a hosting provider of five OSPs.55 Wesdorp perceives the same recruiting

effect as Kraft and Hinderink mentioned above: “Codespeak helps a bit there too

55 See http://codespeak.net

Promotion of Community Building Page 73

because a lot of developers who are interested in new and innovative projects go to

Codespeak. Although I have to add that most of them will probably be more

innovative and a bit more Python developers than people who are just using a What-

You-See-Is-What-You-Get editor.” For the Magnolia team branding of their software

is important so this was one of the reasons why they built their own website parallel

to the SourceForge project of the OSP: “For us branding and control of the

infrastructure is important so if you use SourceForge you’ll always do some

SourceForge marketing. [...] As I said branding is also important so people receive

a nice looking website and not the one of SourceForge.”

4.4.2. Collaboration
SourceForge used to be the CVS server of Plone as Bühlmann remembers: “In the

beginning, yes, but now they have a Subversion repository. They try to install their

own infrastructure for versioning, project management and so on. Nevertheless lots

of things are going via SourceForge.” As Bühlmann believes SourceForge is a

perfect possibility to start with a new OSP. Later on, as Rothfuss observes, many

large OSPs move away from SourceForge: “Most projects that are successful and

finish their childhood will leave SourceForge after a while. It also happened to

PostNuke because the infrastructure didn’t bear the demand.”

It is relatively easy to start a new project on SourceForge. But Rothfuss sees handi-

caps of this low entrance barrier as well: “Their advantage is that they make it easy

to create a new project – but this is also a disadvantage because many immature

projects will get listed. It would be cool if they had more structure. There are many

projects that have a release called e.g. 0.0.0.1alpha23-c1... So somebody should

filter and look if the projects are really good for something or not.” In the eZ publish

project the limitations of SourceForge were the reasons why they moved to an infra-

structure of their own. Farstad also points out the restriction at SourceForge not to

sell services on their website: “We host everything ourselves. We need this because

of the freedom. Once you grow up over a certain level you just need this freedom to

control everything the way you want. [...] There are limitations, especially if you

have lots of traffic and many downloads and so on. Still it is good as supplement or

an addition. For us, for example SourceForge just wouldn’t work. Especially not

since we’re also a professional company and sell services. This is not allowed

Promotion of Community Building Page 74

there.” Similarly, Kraft built his own development environment for the Magnolia

project and uses SourceForge only as download site of the software: “If you build

your own infrastructure you’ll have much more freedom using your own preferred

tools, like bug tracking and Wiki. Today we use SourceForge as download site just to

save bandwidth. [...] We didn’t put our mailing list on SourceForge because we

don’t want to be dependent and also we knew that e.g. the CVS had problems again

and again.”

Rothfuss in general favours newer technologies than those offered by SourceForge so

configuration of an OSP-specific collaboration platform would be the logical

consequence. But he cautions not to underestimate the effort of building one’s own

infrastructure: “There are people who like doing such infrastructure things, but

many don’t. Especially in the beginning it’s practical to go to such a platform. Often

it’s underestimated what’s actually necessary to build a good infrastructure. It might

mean a severe distraction from the actual work. I rather dissuade against it. Even if

I’ve criticised SourceForge I didn’t want to say that they don’t offer a great service.

I believe such an environment is exactly the right thing for certain stages of a

project. And not all projects ever outgrow SourceForge’s capacity.”

4.4.3. Production
To actually work on the project the collaboration platform needs to be well organized

so one possibility is to split up the source code of the OSP into different sub-projects

as Hinderink reports from TYPO3: “In the second [SourceForge] project some parts

have been outsourced, e.g. the Database Abstraction Layer, DBAL and other things.

These are extensions with a large impact on the system, having large consequences

on it. And there is a maintainer for each of these areas.” The CVS can be considered

a handicap of SourceForge since today’s technologies with Subversion offer better

possibilities to track the changes of the software as Rothfuss implies: “Also I’d say

SourceForge isn’t that innovative any more. Their bug tracker is quite old and so far

they offer CVS only. Hopefully they’ll offer better tools soon.” Wesdorp appreciates

the benefits of the Codespeak platform: “It has kind of a nice setup there that he has

this SVN [Subversion] repository and some other stuff that is shared by all the

users.” On the other hand it has its advantages to build one’s own infrastructure to

Promotion of Community Building Page 75

use better tools, as was done in the Xaraya project: “Bitkeeper was introduced, a ver-

sion control system that’s also used for the development of the Linux kernel, similar

to CVS but with much better features.”

4.5. Physical Meetings
As opposed to the usual virtual way of working in OSPs, physical meetings bring a

new possibility of interaction into the community increasing the communication

bandwidth enormously for a short time. There are many different kinds of such meet-

ings ranging from fun events to user group meetings to conferences, open source ex-

hibitions and Sprints.

4.5.1. Recruiting
The first public presentation of Plone happened on a conference Bühlmann attended:

“The two initiators of Plone met for the first time in Charleroix, Belgium, at the

Euro Python Conference 2002 where I also went. In a small room next to the

conference they presented Plone during 45 minutes to about 20 persons. They

presented the basic idea and the architecture behind it. Somehow, I don’t know why,

lots of people got attracted by the project.” Later on, Bühlmann had the idea to or-

ganize a Plone-specific Sprint in Bern: “I announced the Sprint and hardly a few

days later all the 30 places were occupied. So in February 2003 we organized the

first Plone Sprint of the world here in Bern. I knew Plone needed something like this;

people had to get to know each other to improve working together via the Internet.

So we really went drinking some beers. This was the beginning of a whole lot of

developer meetings.” Community promotion can also be organized by companies, as

eZ systems is doing by offering lectures by the software developers: “One thing

we’re working on now is to get user groups started. Currently we’re starting a user

group here in Oslo. We are promoting users who want to start an eZ publish user

group. Also we offer to organize third party talks so for example if they want

somebody from eZ systems to talk at their user group meeting we can probably

arrange that. We can also help out in promotion and hosting of their user group

website. There are some user groups on the way.” So physical meetings are also at-

tractive because core developers are present often giving valuable assistance on cod-

ing issues as Bühlmann experienced personally: “During a Sprint you learn much

more than by reading mailing lists. You can listen to talks and gain much more than

Promotion of Community Building Page 76

through reading mailing lists. You can also program together with developers who

really know it. In this way you learn much faster. It’s the pair-programming idea,

writing code in pairs.”

Community meetings don’t need to be working events. The annual snowboard tour of

the TYPO3 community e.g. is mostly a social meeting point for the contributors. It

also attracts newcomers to the community: “The annual snowboard tour is another

psychological factor binding the community together, because it’s not just a

conference but a fun event.” The fun part is important and meetings must be attract-

ive for visitors so the Plone community looked explicitly for extraordinary places for

their sprints: “In the castle we worked in the living room of the owner. The

dimensions of the room were about 10x10x8 meters and dinner we had at a long

table like 50 knights. Those were very special, unique moments when programmers

from all over the world met for one topic only.” The personal relationships among

the software developers are important so Bühlmann continues: “Some of them I‘d

already seen for the third time that year so I can say now that I know Plone people

better than my neighbours here in Switzerland. So the Plone community is not an

IRC or email community but a community of friends who see each other regularly.

This leads to unique stories every time we meet, like if you go into a training camp

with a sports club. For example at the first sprint I organized a traditional Swiss

cheese fondue in the city. Limi ate way too much so he won’t ever again eat fondue.

For two days he suffered from stomach aches. To this day he always reminds me of

this incident and that it was a bad idea to go out for fondue. I even acquired the

nickname ‘Mr. Fondue.’ This is the kind of stories you tell over and over again.”

General exhibitions of open source software are also a possibility to present the OSP

to interested visitors as Hinderink experienced: “There are always these show case

events like LinuxTag or LOTS in Switzerland. These things are always very

valuable.” And Farstad adds: “Also we are active at the various open source

conferences and go to trade shows. Basically we travel the world to meet people.”

He points out the positive effect meeting the developers personally at these interna-

tional conferences: “Yes, there is one official eZ publish conference in Norway. And

we are at many other conferences many times a year like the PHP conference, the

OSCOM and others. So we meet a lot of people all the time. Now that we’re starting

Promotion of Community Building Page 77

an office in Germany we will most likely start a German conference as well. [...]

That really makes a difference when you discuss something in a personal forum. I

mean I did this for several years and suddenly you meet them in person - that is

totally different to discuss after you’ve met them. Of course you don’t need to do that

but it really helps.” Plone community members, too, went to a number of exhibi-

tions: “In Italy we simply met in a booth during an IT exhibition. Instead of exhibits

we set up some tables where we could work. It wasn’t really good because it was too

noisy but the important thing was to meet once again after only a few months. [...]

You talk about this and people are amazed that developers from all over the world

meet there to program during three days.”

4.5.2. Collaboration
To enhance internal communication and collaboration, the most active community

members usually go to the conferences as Farstad knows: “Also we have a

conference every year so I actually meet people in real life. That’s were the

community is, at least the hard core.” Hinderink, too, saw the demand of the com-

munity for more knowledge about the project and thus the community plans the first

international TYPO3 conference: “Also there will be the first conference next year

[2005]. We don’t know yet when, either May or September. It’s in Karlsruhe, the

first international TYPO3 conference! [...] We hope to relieve the snowboard tour.

The need for a conference grew a lot because of the success of the project. So many

people come to the snowboard tour hoping to find a conference which is not possible

to offer.” Next to the large events there are also small-sized meetings for the core de-

velopers of TYPO3 to better coordinate software development: “First there are

small events for the people around Kasper, about once a year. This year we were

only six persons when we met in Lüneburg. Last year there was a larger meeting

because of a specific task. It’s not a public meeting, people get invited.”

Because of the increased confidence in the community large sub projects can be ini-

tialized during or as a consequence of physical meetings: “The greatest effect, as

Kaspers says, is ‘adding faces to emails.’ A new level of trust arises between people

who previously met only on the mailing list. After these snowboard tours new

projects get started and collaboration as a whole is better. For example on the last

snowboard tour there was the discussion about translating the typo3.com website

Promotion of Community Building Page 78

into German. The issue showed up again in the marketing mailing list so an agency

in Berlin called about 20 other agencies and collected 100 euros from each of them.

Thus they could pay a translator and the site got translated very quickly. There were

long discussions before but nothing had changed. There is a difference if you met

once and drank a beer together. It’s just easier to appraise somebody.” In the Co-

coon project, too, collaboration improved when during one of the conferences the

community came to an architectural decision as Delacrétaz remembers: “For three

years now we have the Get Togethers, annual community meetings. Last year for

example we decided to have one single form library, the classes which process the

forms. Before there were three libraries but we decided to really focus to get a clear,

common vision. We don’t want to exclude the others but for the Cocoon project we

have now Cocoon Forms. There are still people who do large applications with

other libraries, it’s not prohibited, but for the team there is now only one.” And in

the Kupu project a personal meeting between the future core developers brought

them to an important decision about the software license: “And it wasn’t until we

went to Switzerland for some reason. I think there was a Sprint or some discussion

about editors on the client side that can help open source content management

systems. That’s when I got to discuss with Philipp von Weitershausen by the way. We

had the Epoz issue at that point. That’s when we decided to change the license to a

better known open source license. So it’s now BSD style rather than the Zope Public

License it used to be.”

Another advantage of physical meetings is the knowledge transfer as Bühlmann ex-

perienced during extreme programming with Alan Runyan: “There I programmed

together with Alan Runyan in a pair programming team. In this way I got to know

him and learned a lot from him.” Also, personal relationships can overcome internal

conflicts as in the case of the difficult phase transition from Plone 1 to Plone 2 when

somebody wrote an email with an urgent request for a professional release manage-

ment. Bühlmann remembers: “First I thought ‘Oops, now we’ve got trouble

brewing!’ But since the people knew each other personally no bad mood developed.

So here we see the importance of personally knowing each other. This I believe is the

main success factor of Plone: people drink beer together.”

Promotion of Community Building Page 79

Although Wechner, too, is convinced of the positive effect of physical meetings

among developers he points out a certain danger: the formation of an inner circle:

“They’re good to advance the project and let it run. They’re motivating and giving

an impulse for the community. On the other hand there is also a threat. When you

meet all those people, spend time together and go out and so, then some sort of an

inner circle develops. So you have to be aware that such an inner circle doesn’t start

making decisions and fencing off the outside. [...] For example your boss likes to go

out and drink so you join him and slowly you become part of this inner circle.

Another guy who is really great, might not like to drink that much so all of a sudden

he is an outsider. It’s always the same thing. In open source communities, too, there

are people who are more respected than others. Like in Animal Farm: ‘All animals

are equal but some are more equal.’ So it’s important that those people who have the

power in the community take care that this doesn’t happen. This is another aspect of

that strong leadership. [...] As everywhere connections help. [...] At least, in a

community the effect of such relations is much smaller than in a company. It’s a

vicious circle where only those who are stronger and have connections rise up and

not those who are actually better. Maybe they’re just not good in developing these

relations.”

4.5.3. Production
At the annual meeting of the Cocoon community above all the software itself gets

further developed: “There is an annual Get Together. This year [2004] we had it for

the third time. This is very good. This year we had 130 participants, quite a lot for

one single project. The first day was Hackathon, bug fixes and so on, the other day

was conference and in the evening we had some social event.”

Apart from all the social effects of Sprints, Bühlmann affirms the main idea behind

them: “A sprint is a meeting for developers where intense product development takes

place.” To make sure this is really accomplished, Rothfuss recommends to set clear

and realistic goals for a Sprint: “The communication bandwidth is extremely high

and it’s excellent for those who can participate. Often things can be achieved during

a Sprint which normally would need months to accomplish. We already had a couple

of Sprints. There are actually two different opinions. Some say they just want to meet

and look what to do. The other direction is to prepare it in more detail and to have

Promotion of Community Building Page 80

somebody leading the Sprint. Usually if there is just a meeting, the people end up

reading their email in a room. For a Sprint to be successful, specific goals are

needed and not just some abstract ideas like a new architecture. The goal should be

realistically achievable during the Sprint.” To successfully carry out a Sprint the ne-

cessary infrastructure must be available as during the first Plone Sprint at the Uni-

versity of Bern: “It was a perfect place to do such a Sprint because we could install

WLAN and had black boards to sketch ideas quickly.”

A distinction between the various types of OSP is made by Wesdorp who observes a

preference of large projects to use Sprints as their instrument for radical progress in

software development: “As it appears, right now at least for Kupu 1.x, we will never

have a Sprint I think. I mean if people are interested, I’m interested too. I think

development, as it goes right now, goes quite fast. Not like these huge, monolithic

projects that just need a Sprint to get the first head start or so. [...] The sprints I’ve

seen so far are usually for larger projects. When I think about a Plone Sprint for

instance it’s just to get stuff done for a project that is already long running. It’s not

by definition for a monolithic start-up or something. I was maybe a bit overdoing it.

[...] I’m not sure but maybe a difference is that Plone is way larger so you can actu-

ally help with large parties to do a lot of hacking and have a good time and also

make it sort of coordinated because I reckon in a project as large as Plone it’s way

harder to coordinate the development team. It’s definitively good to know with whom

you are working.”

4.6. Foundation
Most of today’s large OSPs are owned by a foundation or an association. These act as

the juristic entity of the OSP holding the copyright of the program code thus repres-

enting the software company in commercial environments. But in the open source en-

vironment the foundation also fulfils other tasks as shown in the following chapters.

4.6.1. Recruiting
After being accepted by a well-known open source association like the Apache Soft-

ware Foundation (ASF) Wechner knows the publicity of the OSP will increase: “At

that time the Apache Foundation had decided they wanted more top level projects -

like the Apache Web Server or the Java project. [...] Stefano wanted to make Cocoon

Promotion of Community Building Page 81

a top level project and have the CMS and other Cocoon based projects as sub

projects. He liked our software, because we had integrated other stuff, so he asked

us to donate it to the Apache Software Foundation. For us this made sense because it

was open source anyway and also because of visibility reason.” The good reputation

of the ASF gives the foundation a high credibility especially concerning its license as

Delacrétaz experienced: “The reputation is certainly good. People know that the

Apache Foundation is here to stay, it is well known for many years now. Also our

license is ’clean’ so people can do anything with the software and they will not be

legally harmed as long they retain the credits and don’t misuse the Apache label.

For example they can’t call their company ‘Apache Cocoon whatever.’ Also the

logos are protected and such things. But for everything else one has lots of freedom

to apply the Apache License without being sued. So the reputation is definitely

important.” Wechner goes even further and calls the ASF a strong software brand

transferring its label to all projects: “This has a large influence because today

Apache is a real brand. Nowadays you don’t have to explain to an IT manager why

it’s good or bad to use the Apache Web Server because over 50% of all the websites

are hosted with the Apache Web Server. This confidence spills over to the other

projects. Of course it’s not sure that you can sell your project just because of this but

at least it’s a door opener, you don’t have to do much selling any more.” Still,

Wechner has noticed no radical changes when Lenya joined the ASF: “The

community didn’t grow enormously. We already had about 150 people on the

mailing list when we joined the Apache Foundation. How many we are now, I don’t

know. Nothing changed radically, maybe because in the beginning we were an

incubation project, one of the first ones.” On the other hand, Kraft is somewhat scep-

tical if the influence of the ASF is really that high for all of its projects: “It’s difficult

to say. Apache does a lot of software but not all are well known projects.”

The Plone Foundation plans to register a trade mark enabling professional marketing

support: “Another aspect is that Plone gets registered now as an international trade

mark so nobody can misuse Plone for his own purposes. [...] The foundation is also

developing a marketing concept. Porter Novelli, a world wide marketing company,

donates marketing services of a value of USD 20’000 a month by letting one of their

marketing specialists work for the Plone project.”

Promotion of Community Building Page 82

The newly founded Magnolia Organisation intends to attract new members by offer-

ing them the same influence as Magnolia’s initiating company obinary: “We recently

founded the Magnolia Organisation of which obinary shall be only one member

among many others. Obinary will always be the initiator of the project but other

companies shall have the same rights, too.”

4.6.2. Collaboration
The community members of Xaraya founded an organisation based on the ASF as

Rothfuss describes: “We then designed our structures based on those of the Apache

Software Foundation because this is a mature organisation that found out what

worked and what not. So we founded the Digital Development Foundation that keeps

the copyrights of Xaraya and should be the long term supporting institution of the

project.” The overall goal of a foundation is to bring sustainability to an OSP: “In

general a foundation just gives more stability to a project. People come and go, but

the institution stays. So for example at the moment I don’t have much interest in

Xaraya anymore but the association still stays the same and people can go on

working. By these means, a foundation reduces the risk for all participants.”

The TYPO3 Association was founded to distribute the various tasks of the com-

munity clearly and to relieve Kasper of work: “It needs to be distributed among

different people. One major effort to do so is the recent foundation of the TYPO3

Association with residence in Switzerland. The idea of this association is to

distribute different tasks like quality assurance of the extensions and the service

providers.” The basic goals of the new institution are transparency and benefits for

the members as Hinderink explains: “From my point of view there was also some

Glasnost idea behind it because transparency and openness are also issues. The

association is supposed to have a beneficiary effect for everybody. It won’t go into

competition with the agencies and offering service to customers - only for community

members.” Besides specific benefits and duties an association also serves to develop

a certain kind of common culture. Delacrétaz describes how th is is achieved in the

ASF: “So we try to find people who make their way into the community gradually,

learn how to deal with others, learn how to handle conflicts - of human or technical

nature. We call this ‘the Apache way.’ There are written rules and there are also

some sort of politeness and methods that aren’t written down. That’s how we work.”

Promotion of Community Building Page 83

Furthermore, it is possible for an association to hire people for certain tasks where no

volunteers can be found: “It’s going to change now somewhat because of the

founding of the TYPO3 Association. By defining responsibilities it gets clearer. Also

project groups with certain tasks will be formed. Nevertheless, just by formalizing

things it’s not guaranteed that everything will work. The main problem remains:

people have to invest time. So one of the ideas of the association is to pay for certain

work where no volunteers can be found.” A similar idea is behind the Plone founda-

tion: “Right now there are important activities going on with the initiation of the

Plone Foundation. It’s like the Apache Software Foundation, an association that

protects Plone and offers administrative help. Computer Associates have sponsored

Plone and donated USD 100’000 to the Plone project enabling the hiring of

somebody to lead the project. He has to see that everything works fine in the Plone

project. He mainly coordinates the mailing list, motivates people to do certain tasks

and so on.” Concerning the hiring of people the ASF follows another strategy as

Delacrétaz explains: “When more and more projects are included one has to take

care to retain a clear overview and an appropriate support of the infrastructure.

Maybe it would become necessary to hire people to do that. [...] The Apache

Foundation has no employees at all. The ApacheCon, the Apache conference, is

organized by a company that gets a part of the money that is generated by the

conference. Voluntary work wouldn’t be appropriate here since it’s an international

conference. That’s the model for the moment. Maybe if the foundation continues to

grow we might need part-time employees like a secretary or something like that some

years from now.” Rothfuss points out the advantage of an association concerning

donations: “If somebody wants to sponsor the project it’s much easier to donate

money to the foundation but to one single person. Also it’s better because you can

deduct your donations from your taxable income.”

Another reason to form an independent association for an OSP is to hand over all leg-

al issues to this institution thus protecting the individual developer legally. Rothfuss

describes this responsibility of the association by pointing out the cumulated power

of the foundation: “First of all they [the foundations] protect the developers against

lawsuits. The basic idea is if there are any legal issues not one single developer

without resources has to protect himself but since the copyrights of the developers

are transferred to the foundation it takes care of all these things.” Bühlmann con-

Promotion of Community Building Page 84

firms this function and explains one of the goals of the Plone Foundation: “The third

action is to establish a well based licensing model. It’s a hot topic right now. They

try to assign all the copyrights of Plone to the Plone Foundation. At the moment

Plone is published under the GNU GPL. The Foundation is supposed to decide

under what license Plone is to be published so they want to clarify the current state

of right. The idea is to relieve the individual developer from responsibilities. So if a

patent claim is opened, e.g. Microsoft says Plone infringed upon our patent XY, then

the foundation behind Plone shall make it less likely that a company sues Plone.

Before this change, e.g. Alan Runyan or Alexander Limi could have been sued

because they might have broken a registered patent. But because they gave their

rights to the Plone Foundation a company has to sue the foundation. They, however,

can take an attorney much easier now and this might scare off potential adversaries.

This instrument of power is supposed to provide security in the background for us as

a company, too.” The Apache Software Foundation, too, protects its committers with

its license: “Also the committers are very well protected by the license. Nobody can

sue a committer. If anything judicial happens everything is forwarded to the

foundation. We are very well protected. If for example I made an error in my code

and some user of my Apache Cocoon software has problems because of that he can’t

sue me since it’s all managed by the foundation.”

As shown in the above statements any kind of association brings advantages to the

OSP community. Sometimes, however, it’s difficult to find an arrangement, which all

stakeholders of an OSP agree upon. Bühlmann experienced this when founding the

Zope association in Switzerland: “We founded SwissZope, an association of

companies working with Zope. Unfortunately it didn’t come out so well so it’s a bad

example of an open source community. In Switzerland there are now two Zope

communities, but the country is actually too small for two communities. In the

beginning there were people from Zürich who founded zope.ch. I wanted to help

there but also intended to introduce business aspects like company presentations, a

Plone service supplier directory and so on. But the people who founded zope.ch

wanted to build a non-commercial community. We tried to negotiate but failed so we

founded swisszope.ch. We also went to the Internet Expo with this label which

Promotion of Community Building Page 85

resulted in new projects. People read some showcases on swisszope.ch and followed

the link to our company. So it’s not really a community now, only three companies

are still on the portal.”

4.6.3. Production
As explicitly illustrated in the section above an association cares intensively about

legal issues concerning an OSP. While for collaboration it is important to protect the

contributors, for production it is vital to protect the source code of the OSP. So when

the copyright goes over to the foundation it becomes also the owner of the code and

thus can be protected by the association.

Additionally, the progress of the OSP itself can be supported by funding core de-

velopers for their work: “The main idea is to raise money to pay the core developers

of TYPO3 to continue their work. So to contribute something you just become a

member of the association and pay your annual fee. Membership is possible for indi-

viduals and companies.” The community should support Kasper in further develop-

ing TYPO3 following his hopes for the future: “He wishes money and autonomy to

concentrate on development. But Kasper also wants to keep his way of working,

especially this intuitive and creative part. He’s not an engineer who first makes exact

plans and then builds everything according to them. He’s really creative, thinks

about an issue and then gets into some flush of work. This is something that has to be

protected. I look at it as a challenge for the community to preserve an environment

where TYPO3 keeps the continuity of development and also uses and protects the

talents of Kasper. These are the things that have to be synchronized - and it’s not

very easy. The community has to offer a nutritive soil for this.”

Last but not least the technical advantage of the ASF and other OSP associations is

the high end infrastructure they provide for their projects. As an example Cocoon

uses it for development and distribution: “The Apache website has very good mirrors

because it’s also used to distribute the Apache Web Server which has much more

downloads than we do. But we can use the same infrastructure. There are mirrors in

Switzerland and elsewhere. [...] And there’s also the infrastructure. There is a very

good infrastructure since it gets paid by sponsors, companies and individuals. We

also benefit from this. So it’s certainly good to be part of the Apache Foundation.”

Promotion of Community Building Page 86

4.7. Internationalisation
There are various aspects of internationalisation of an OSP. Basically it means the

software isn’t limited to one country only. Thus community members, both active

and inactive users, live in different parts of the world using the software adapted to

the individual conditions of their environment.

4.7.1. Recruiting
When going international, all the active developers in the global market of open

source software become potential contributors of the OSP as Rothfuss concludes: “If

the project is used internationally the market also increases.” Bühlmann holds the

same opinion and advises even to think about internationalisation from the begin-

ning: “I believe Switzerland is too small to start an open source project focussed on

the Swiss market, only. There are too few people, developers and users. Switzerland

is too small a country so you need to start your project internationally from scrap.”

Interestingly the Plone project itself was started by two developers living in different

continents: “Alexander Limi is from Norway and Alan Runyan is from Houston,

Texas. They physically met for the first time in Belgium.” Another way to recruit new

contributors is to offer authoring of translations of the user interface. Rothfuss re-

commends to keep this in mind from the beginning: “It’s quite easy to accomplish

and contributing translations is also a good opportunity for people to get into the

project. If you plan this from the beginning it’s a serious advantage.” So it is suc-

cessfully done at the eZ publish project: “And our system is also multilingual so you

can do translations. [...] We’ve gotten about 20 translations, all of which are

contributed by the community except the Norwegian and the English one.” Organiz-

ing international meetings at differing sites allures community members because they

have a good reason to travel around and meet people from all over the world. Bühl-

mann mentions the various meetings of the Plone community: “In December 2002 I

went to Rotterdam to a Zope Sprint. [...] In May 2003 the next Sprint took place in

Padova, Italy, and later in September 2003 the next one in a castle in Austria.”

An important factor of internationalisation is the language for communications.

Farstad shows there are various considerations about the issue concentrating on the

question of using one single language or offering different communication languages

“First you need to speak a common language, normally that’s English. [...] So by

Promotion of Community Building Page 87

having an English community some people won’t join because they don’t speak the

language. [...] To solve the problem, you could create an English, a German, a

French forum and so on. But this means some people will just discuss in the German

forum so you’ll lose those users for the international forum. It’s a two headed horse.

We haven’t yet opened any language-specific forum other than in English. So all

communication in our community is in English.”

4.7.2. Collaboration
By knowing community members all over the world new possibilities of resource al-

locations become possible. Bühlmann tells about a Sprint meeting: “There were

people from Japan, India and so on. So one guy from Bangalore asked if we still

needed any development resources because he would suggest renting Plone

programmers from Bangalore.” Also there is a large motivational aspect of having

an international community. Rothfuss e.g. is always amazed of the contributions that

are submitted during 24 hours a day: “In addition it’s really great to wake up in the

morning and receive a bunch of commit messages because people on the other side

of the planet continued to develop the project.” Of course this is not the only reason

because the more people from all over the world use the software the better its

applicability becomes, as he continues: “It also broadens the project and makes it

useful for more than one application.” And not only the software becomes broader

but also the community benefits from its increasing variety. Farstad mentions it is

even possible to overcome inhibiting customs of one cultural area: “You’ll

definitively get the feedback on use cases and set-ups which is not normal for our

customers in Norway. [...] So you get feedback from many different cultures.”

On the other hand having an international OSP community also brings up new col-

laborative challenges. One issue is communication which gets more difficult when

people don’t write in their native tongue. Therefore, Delacrétaz recommends em-

pathy and respect for each other: “On mailing lists you can communicate only

through writing and it’s asynchronous. For many people English is not their native

language and also the mentalities are different. We have people from Europe,

America, Australia, South America, Russia, people from everywhere. So you have to

take care how you say things. So when I think that somebody wrote something weird

in his email I have to comment cautiously e.g. ‘*I believe* that’s wrong.’ or ‘I’m a

Promotion of Community Building Page 88

bit worried about that.’ Not ‘You are dumb and what you’ve written is stupid.’ So

often we realize we misunderstood it or he didn’t write what he meant because of his

English. It has to do a lot with open communication, politeness - not meaning

political correctness, just common politeness and respect for people.” Also Rothfuss

knows about these communication challenges: “Also you have to remember that for

many people English is not their primary language so if somebody writes something

it might be misunderstood on the other side of the planet.” So it is not astonishing

some people might be embarrassed to participate in the ongoing discussions again be-

cause of cultural habits as Rothfuss continues: “Often it’s underestimated how many

people don’t know English very well or feel too embarrassed to participate in the

mailing list. Also in certain parts of the world it’s not common to participate in a

discussion, for example in Asia.” And for physical meetings one has to remember the

different cost of living. When Bühlmann organized the Plone Sprint in Switzerland

the visitors from other countries encountered a much higher price level here: “It was

good but Switzerland is too expensive to organize international Sprints because of

the side costs.” Additionally, licensing problems may arise because of varying legal

systems in different countries as Hinderink warns: “These are points where you

leave the developers’ corner and get into legal issues. That’s difficult because there

are also different geographical areas with different juridical environments. For

example in Germany the regulatory frameworks are simply different from those in

the USA or other countries.”

4.7.3. Production
As Farstad knows not all software is developed in way that translations of the user in-

terface are easy to manage: “The software has to be general enough to be able to be

translated and localized into other languages like Chinese and Arabic. This is

specifically important for CMS. So the design of the software is critical if you want

to have an international community. It doesn’t help if they can discuss the software

on the forums if they can’t use it in their native language.” Also Rothfuss assumes

translations will be demanded of good software: “If a software is easy to install

sooner or later people on the mailing list will demand the translation into different

languages.” Wesdorp experienced this in the Kupu community so they are planning

Promotion of Community Building Page 89

on extending the editor with customizable language files: “We have a lot of requests

for internationalisation. I currently wrote a JavaScript library for

internationalisation so we can use that.”

4.8. Recruiting Specific Subjects
In contrast to to the spanning subjects the recruiting specific ones only concern im-

provements of methods to enlarge the community of the project. Those are basically

marketing aspects that increase the attractiveness of the OSP so skilled developers

and other contributors are motivated to join the community.

4.8.1. Spreading the Word
News channels publish general information about new software and technologies,

have a widespread and established distribution and are thus interesting for OSPs to be

used for press releases and articles about the project. TYPO3 uses a wide variety of

such channels: “TYPO3 is quite well represented in the press. Then it’s present in all

kinds of directories like SourceForge, Hotscripts, CMS Matrix of OSCOM and so on.

These play important roles. [...] Also it’s great if you get onto one of the magazine

CD-ROMs of c’t or something like that. It’s always good to do press related work. I

don’t know how important such directories are to start. I believe it usually goes via

magazines and events.” Also Farstad knows the power of press related work so they

write professional articles about eZ publish themselves and send them to publishers:

“The first step is to increase the number of people who know about eZ publish. So

we write articles and have them published in different forums and magazines.” Kraft

follows the same strategy and even could get an article on Heise: 56 “Our strategy is

to do marketing and spread the word about Magnolia. For example last Wednesday

we were on Heise and this had a lot of impact. Also newsletters are important like

the one for Apple Developers where we can announce a new release, and websites

like Serversite and JavaLobby.org. Developers’ magazines would be very cool but

it’s quite hard to get to the right people.”

Originally, eZ publish became known on open source websites. Farstad advises to

use as specific platforms as possible: “We also had a page on SourceForge but that

hasn’t been maintained for many years. It started out on Freshmeat and some other

56 http://www.heise.de

Promotion of Community Building Page 90

sites. One of the first sites we also published it was Hotscripts. If you go there and

look at the rating system... There are about 20’000 projects on Hotscripts. For about

the last three or four years eZ publish has been the most popular project, the most

viewed, the most downloaded and the most clicked on. That has been one of the

channels where we became known. I think they were Freshmeat, Hotscripts and

some other smaller site. [...] They help with marketing and make announcements

about new releases. [...] The whole point of those channels is to get the word out.

[...] Freshmeat is not very specific, the users there are not looking specifically for

web applications, especially not CMS. If you have more targeted sites like for

example Hotscripts then you reach the audience in a better way.” The Kupu team on

the other hand started out on the open source website zope.org only to publish their

OSP: “We didn’t go to OSCOM at first. The original Epoz project was run on

zope.org because it was a Zope-only thing. So we decided to do the first releases on

zope.org, too.” Later on they moved to OSCOM, the international association for

Open Source Content Management, experiencing the positive influence of this step:

“It’s a cross pollination thing. We haven’t been too active on that point but I do

know that a lot of OSCOM people at least know about Kupu, want to integrate it into

their system or already have it done. There is a bit more communications going on.

We have a couple of shared mailing lists, not really active though. It’s a bit useful at

least, I think we still could improve it though. I would like it to be a bit more active.”

Kupu as well uses many different channels to spread the word about the project and

to be found easily: “I think a lot of people find us by just googling and reading new

pages. [...] Of course OSCOM helps there and I think Codespeak helps a bit there

too because a lot of developers who are interested in new and innovative projects go

to Codespeak. Although I have to add that most of them will probably be more

innovative and a bit more Python developers than people who are just using a What-

You-See-Is-What-You-Get editor. Zope.org helps also, we still post some news items

to zope.org. And of course also to news channels and Freshmeat. We do only post

items on Freshmeat so we sort of use it as an announcement channel.”

Last but not least there are often companies behind OSPs or at least offering services

for them so they are also interested in doing marketing for their project. For Kupu

there is Infrae employing core developers of the project: “Also we try to do some

marketing from the company Infrae I work for.” And so does Bühlmann in his com-

Promotion of Community Building Page 91

pany: “The intention of 4teamwork always was to spread the word about Plone

throughout the nation so we did lots of marketing.” Hinderink even believes the ma-

jor part of marketing is done by the service providers: “But the major part is

probably done by the agencies doing marketing on behalf of their customers. I think

that’s the marketing channel number one.” It’s self-evident for companies like eZ

systems or obinary who initiated their OSP to do intense marketing for their product

and offer a wide variety of marketing material as Kraft explains: “[We have] lots of

marketing stuff like a features list and even a video walk through the process of how

to create a new page.”

4.8.2. Credit System
Delacrétaz describes the importance of acknowledgements in an OSP noting business

reasons: “It’s important to recognize people for their work. And for someone like me

as a self-employed person it also has business value. This is my reference. People

contribute so we have to give them something back. We can only give

acknowledgement, neither money nor rights because with the Apache code everyone

can do what he wants. Of course there’s also the community and that’s fun, but the

other side is very important.” In this way an OSP can also be attractive for a student

doing e.g. a research project to write tests or do other contributions because Delac-

rétaz knows they can make themselves known like that: “In this way these students

could make a name for themselves, as contributor or even as committer. If somebody

writes a lot of code it will be noted somewhere - you get credits.” Contributions are

credited in different ways depending if they are minor or major ones: “We have a

status file where all the changes are logged. So when I get a patch from somebody I

as committer integrate it into Cocoon. Then I’d enter into the status file that I

implemented the patch, which was created by this other person. That’s for minor

contributions. People who contribute larger parts are mentioned in the credits file.

There you’ll find, ‘part X is donated by company Y’ or ‘developer A wrote code B.’

We take care to give people their credits.” In other projects like Kupu the credit sys-

tem is not so minutely maintained but it’s still present: “We have a credits text file in

the package. I don’t think it mentions all the developers. Maybe I should correct that.

It has been a while since I last did changes in that.” To appreciate the contributions,

on the website of eZ publish the names of the authors of translations are listed: “For

example the translations page is a very visible page. You see a map of the whole

Promotion of Community Building Page 92

world and a list of all the translations. And of course the names of the persons are

listed so they get credit for what they have done including a link to their web page. I

think this is important. As a contributor you feel like my contribution is

appreciated.”

Rothfuss points out the risk connected with writing names into the source code so he

states about explicit credit systems: “There are different opinions. Some believe they

need this absolutely. But Apache for example thinks it wouldn’t fit their goal ’The

community is more important than individuals.’ So they have a credits file but it’s

not said who did which part. This practice is meant to prevent, say, a company from

accusing specific programmers for their code. I wouldn’t list credits inside the code.

Another, more marketing way is to do weekly interviews with the developers and

show them on the project website. KDE is such a project. Generally, promotion

shouldn’t take place in the code. It might even hold off people contributing when they

see that 95% of the code comes from one single person.”

4.9. Collaboration Specific Subjects
The following topics pertain only to the possibilities of improving collaboration in

OSPs. The ways of communication are essential in such projects so the different as-

pects of each communication channel are pointed out. Also central aspects of a com-

munity’s structure are discussed with a special emphasis on the influence of task lists

on community building and improvement.

4.9.1. Communication Channels
For virtual collaboration as it is used in OSP communities very elaborate communic-

ation means are vital. With the Internet, many different ways of communication are

possible so the interviewees were asked what specific channels they use and what

their experience is with the advantages and disadvantages of each of them. To give

an overview, Wechner outlines the interaction of today’s most commonly used com-

munication channels in OSPs: “So in summary I’d say IRC is for very quick and

simple questions and answers, the mailing list is to discuss issues in detail with the

entire community and the Blogs are in the end the consolidation of all the

discussions and decisions, which are published. And the aggregated Blogs in the

Planet XY show the different opinions of the developers.” Additionally, all of the

Promotion of Community Building Page 93

OSPs investigated maintain a project website with all the permanent information like

documentation, frequently asked questions, feature overviews, demos etc. Because

this channel is assumed well-known and for a lack of specific statements it will not

be treated further in this paper.

Comparing impermanent and permanent communication channels, Rothfuss shows

the roles of the different types of technologies: “The mailing list is the working

horse. It’s quite old, widely used and practical if the traffic is not too high. You have

an archive including a search option and everyone can read it even if he wasn’t

online. On the other hand it’s quite annoying to see that although you reached a

consensus and maybe even a decision, after a while people forget about it and the

same discussion starts all over again.” Mentioning this disadvantage of

insufficiently structured knowledge in mailing lists he adds: “Therefore tools like

Wikis and bug trackers help to do write down something permanently. Additionally

real time communication like IRC is also important. Not to allow some kind of

conspiracy or to do design decisions but to discuss with others and just hang around

with them. I believe this is important for community building.”

4.9.1.1. IRC
Most of the investigated OSPs use IRC actively and for some of them like Plone the

chat is even fundamental: “IRC is important. It is actually the backbone of Plone.

[...] It’s more like a meeting point where you get inside informations and where

rumors are produced. [...] There are many channels but only one Plone chat you

should use. There are companies who log the chat and read it afterwards because

there you learn the most. Although information can get lost the advantage of IRC is

it’s direct and fast and you can talk to each other as in a restaurant. On plone.org

you can find a couple of IRC protocols of interesting chat sessions, just copy-pasted

to the website.” In the Kupu project, too, many community members meet online

regularly: “Our IRC channel is always quite active and a lot of people pop by at IRC

before visiting the mailing list. It’s just easy to get an instant response, it’s an easier

way to communicate. And then they choose following the mailing list or the IRC

channel, too.” And in Cocoon there are even regular online meetings of the

developers to do focussed communication: “There is an IRC channel for Cocoon.

But it’s not used very much. There is a so-called First Friday meeting on IRC every

Promotion of Community Building Page 94

month. It started about one year ago. As many of us as possible try to be there so it’s

very good if it works. But it doesn’t work all the time depending on the level of

occupation of each of us.” The positive aspect of real-time communication is partly

outweighed by the possible absence of people, a disadvantage of IRC that Wechner

points out: “The advantage with email is you can answer questions or remarks, in

IRC the person might be not be there any more. But IRC is very good e.g. for asking

simple starter questions which have been discussed already on the mailing list. It’s

also a good way to just feel the mood in the community. IRC generates something

like a community feeling. [...] There was a time when people started to take

decisions in the IRC. So I wrote a couple of critical emails because I believe if

decisions are made in the IRC many others - who are not online or don’t have time

at this very moment - are excluded from the decision making process. Of course it’s

somewhat specific considering my personal habit of not being in the IRC often -

partly because it distracts me and I can’t work very well any more. Others don’t

have a problem with having the IRC open and doing other stuff next to it.”

4.9.1.2. Mailing List
All investigated OSPs use the mailing list as their primary communication channel.

Plone started out with only one mailing list which was an advantage as Bühlmann

explains: “In the beginning there was only one mailing list. It’s an advantage to use

only one mailing list instead of ten different ones about different topics with nobody

posting anything on them. The one list in the beginning got more and more traffic

and so it could be split into a developer and in a user mailing list. Later on others

were added, one for each specific product. But only step-by-step: when a topic

appeared again and again a new list was opened.” In the Cocoon project there are

various types of mailing lists including a closed one: “We have one mailing list for

the core developers, one for the users and a closed one for the PMC [Project

Management Committee]. There was a docs-specific mailing list but it’s not used

any more. We handle documentation issues on the main ‘developers’ mailing list

now.” eZ publish as well has split their discussions into different groups also using a

closed mailing list for a certain group: “We have a few mailing lists. We have a

developer mailing list, a partner mailing list - of course you need to be a partner to

be member of that.” Even more different lists are used in the TYPO3 community:

“There are two main mailing lists, the English mailing list and the developers’

Promotion of Community Building Page 95

mailing list. Additionally there are installation, marketing and user groups’ mailing

lists - all countries and cities have their own ones. [...] Everything that has a deeper

significance will go via the developers’ mailing list. First aid and political matters

are discussed in the English mailing list, for example questions about licensing.

There is a German list but it’s not an official one. And there is also an

announcement list where a few persons - Kasper, the two release managers and I -

can send news. I send announcements about new versions, press releases and so

on.”

So what really attracts so many people to the mailing lists and how are the skilled and

experienced developers motivated to join the discussion? Kraft tells of his experi-

ence: “The general problem is that people who know how to help don’t have the time

to stay on the mailing list all day and answer emails. The discussions need to be

interesting enough for them to invest their time. [...] The most important thing is to

show that something is going on. So if somebody asks a question and he doesn’t get

an answer during a couple of hours he’ll be disappointed. Therefore good people

come back because it’s also fun to communicate like that.” Hinderink confirms this

notion that keeping the discussions interesting is essential to make them attractive for

highly skilled contributors: “It’s also important to raise the level of communication

on the mailing list so it gets interesting for people with lots of knowledge to

contribute.”

4.9.1.3. Blog
Blogs are personal internet diaries where e.g. open source software developers write

entries about the projects they are working on. A collection of all entries relating to

the same topic but from different authors results in a so-called Planet of the specific

OSP. Wechner explains why this summary of developer comments helps structuring

the information flood: “There is no Lenya Blog nor Planet Lenya. Nevertheless I

believe it would be good to have a Planet Lenya, the aggregation of all Blogs that

have the category Lenya. For example Henry of Midgard, another open source CMS,

is very much convinced of that. He says since there is Planet Midgard he doesn’t

have to write many mailing list emails any more because the essence is written down

in the Blogs. So there is for example some mail thread in the mailing list and the

final decision gets blogged by the members like a resume. [...] Of course Blogs are

Promotion of Community Building Page 96

not perfect. They are just the opinion of one single person. You can comment on the

Blog entries but not everybody will see these comments.” And Rothfuss, blogger

himself, shows why Blogs reach a wide area of readers: “To feel the pulse of the

community it’s good to have an aggregation of all the related Blogs like Planet

OSCOM or Planet PHP. It gives an abstract overview about a community. [...] I

subscribed to several to be informed when something big starts to happen. I don’t

want to know about every commit in these projects but want to hear about new

releases or when they found out something interesting. [...] Weblogs usually have a

broader spectrum of readers than the project mailing list so a wider range of people

is accessed this way.”

4.9.2. Community Structure
Structuring the different tasks in the OSP community and building organisational en-

tities may support collaboration of the community members. Examining the different

levels of formalized organisation the distinct motivations of the OSP leaders are in-

vestigated. The Kupu project seems to have the least structure of all the OSPsex-

amined : “It’s really sort of anarchistic, really open, really anyone can join and do

their thing. And as long as the releases are stable it’s a also OK to mess about with

the trunk a bit if you want. I do have to add that most of the people who are sort of

new either work on a branch obviously or work on integration stuff in their own dir-

ectory, so it doesn’t happen very often that the core is broken or anything.” But also

concerning website updates and similar tasks nobody has a clear responsibility as-

signed as Wesdorp continues: “In that sense we are also sort of anarchistic. I think

now three people have access to the website and if we see that something is wrong

we just change that. Usually the website is pretty static actually. So we have the

release and make notes about that and that’s usually done by Philipp and me, too.”

Interestingly, the attempt of the TYPO3 community to explicitly build an internal or-

ganisation failed. Hinderink explains why it did, what forms really exists at the mo-

ment and how the community shall be structured in the future: “There were a lot of

attempts at organising the community. Once it was tried to build teams for all

different topics. And we must say this actually failed. Many people reported for the

positions but in the end they didn’t have the time to adopt the topics entirely. The

only thing that really exists is some loosely defined entourage of people around

Kasper. Depending how tight you draw the circle there are more or less people

Promotion of Community Building Page 97

inside. Looking at the intensity of communication there are about four or five

persons including Kasper and me. It’s going to change now somewhat because of the

founding of the TYPO3 Association. By defining responsibilities it gets clearer.”

Such responsibilities are already assigned in the Plone project as Bühlmann knows:

“We designated heads of specific areas like documentation, release management,

code review, subversion management.” In the Apache Software Foundation, the ap-

pointment of such persons in charge of the project requires the installation of the

PMC, the Project Management Committee: “This is another element of Apache

because every Apache project must have such an organisation. In Cocoon any

committer can be member of the PMC. This is not necessary, every project can

decide how they want to have it. [...] In Cocoon almost every committer is in the

PMC since everyone can say if he wants to join or not. The PMC has a chairman, a

director who has to report to the Apache Software Foundation Board. He has to

send a report x times a year to the board on how everything goes in Cocoon, if there

are technical or political problems, how we advance and so on. So the board gets

some kind of an overview of the current state of the project.” In Cocoon there is only

a person responsible for release management but no other clear defined organisation-

al entity: “Then there is the release manager and that’s about it, I think. [...] The

committers are responsible for the rest all together. Of course everyone is

specialised somewhat but that’s not official. Officially there is only the release

manager and the PMC chairman.” Although Lenya is also an Apache Project

according to Wechner there is almost no structure in the community: “People just do

what they like to and are able to do.” In contrast to to these community founded

OSPs the eZ publish project is differently organized. Most of the software develop-

ment takes place inside the company and the outside relations are fixed in clearly

defined procedures: “Most of the developers come from eZ systems. But we have

given commit access to some [external] developers. This doesn’t mean they can

change everything. We have a mailing list where you need the feature to get

approved if you are an external developer.”

4.9.3. Task List
The goal of keeping a task list in an OSP is to break down the plans for future re-

leases into achievable assignments. Rothfuss believes an explicit task list motivates

interested persons to start participating in a project: “Sometimes people just need a

Promotion of Community Building Page 98

little push. Of course you can say people could look on their own. But many like it

when they get a proposition or an option of doing something. So if a project has

some administrative guy who likes taking care of the bug tracker already in the early

stages, it might help if he assigns issues to certain people of whom he thinks they

might be able to do them. And then they can comment on that. Of course you can’t

force anybody to do something but you can give incentives and say he or she fits very

well for this job and would be welcome in the project.” There is a loose task tracking

in Kupu but Wesdorp doesn’t use a task list for coordination of development “No,

not at all. We have an issue tracker and if people post issues to that we can sort of

assign people to that. But I don’t think that is managed either, people just check out

the issue tracker once in a while and say ‘OK, I can do that and that’ and tackle the

issues. Just before a release I usually crawl through the remaining issues and try to

get them fixed. That works quite well, usually people do their best to pick up the

work that is necessary to get a cool stable release, that’s cool too.” According to

Farstad in eZ publish bugs are collected and he is also open to introduce a public task

list: “We do have a bug list where you can come with suggestions, bugs and

enhancements. We don’t have a public task list but of course an internal one. It’s

because 99.9% of the code is written inside our company. Of course it’s something

we could do to improve the community building.” Additionally, the eZ publish com-

munity may post their wishes for featuresto be shall be realized by eZ systems: “Of

course you can’t send an email saying we want this system and expect us to make it.

But what we do before every release we ask what are the features you’d like to see in

the next version, what are the things we should work on. We take all that feedback

and we see what are the most requested features. We do that in more detail every

year at the conference. There we discuss the next releases and what we should work

on.” TYPO3 has also a task list but there remains the difficulty to realize the features

afterwards as Hinderink experienced: “People actually sign up for certain tasks so

they get the information where to start. Sometimes they do it, sometimes they don’t.

Mostly it’s done out of a mood. Somebody likes the system and wants to contribute

something but in the end it gets drowned in the daily business.” The same effect was

observed at the Freenet project concluding announced interest was abandoned be-

cause of the lack of knowledge concerning the architecture and the programming lan-

guage.57 So Rothfuss realized this entry barrier and thus recommends the available is-

57 See von Krogh/Spaet/Lakhani (2003), p. 1228

Promotion of Community Building Page 99

sues should be small enough so potential contributors don’t feel overtaxed: “There

should be some tasks available which somebody new can start tackling. Just simple

things to improve like a bug tracker with some ideas. Otherwise, if somebody finds

your project and the only task you offer is to build a new architecture - well, where

would you start? You don’t know the project yet.”

4.10. Production Specific Subjects
Production specific subjects relate to community building insofar as how the program

itself appeals to potential contributors. The software quality is essential for the at-

tractiveness of an OSP since skilled developers are willing to invest time into well

designed and implemented programs, only. And the user interface design raises the

overall usability of the application thus improving the user acceptance of the soft-

ware. Finally, the installation process is important because it usually is the first direct

contact of the user with the software so this procedure must be structured a easy as

possible.

4.10.1. Code and Feature Quality
Wesdorp names the feature richness and the overall code quality as attractive points

of the Kupu WYSIWYG editor: “I would say it’s definitively the feature set because

it’s pretty feature complete compared to other open source ones. [...] But also the

way we try to tackle things: It is completely object oriented, it is very clean code, it

has a nice abstraction layer. I think it’s partially the appearance, what it looks like

and what it feels like for users. But definitively also the API. I think the code is

definitively a strong point in Kupu.” TYPO3 also has a wide variety of features,

mainly because of the large number of available extensions as Hinderink explains:

“And last but not least the broad availability of functionality is a good argument for

TYPO3. Most of the extensions are of very good quality and ready for production -

because they weren’t developed based on guesses what the users might need but

were created on customer demands. And this was quite easy, mostly because it’s in

PHP and the extension manager enables a good handling of the extensions.” To pre-

serve the code quality it is important to check the contributions and thus also to eval-

uate the code submits by potential committers as it is done in the Cocoon project ac-

cording to the joining script: “So it’s important that one participates in the mailing

list and then sends Subversion code patches - some sort of correction or change in

Promotion of Community Building Page 100

the code - to the committers. And if one person sends a sufficient number of patches

the committers get tired of integrating all these patches and then say ‘It would be

better if this person could integrate the code directly.’ Also with the patches you can

see the quality of the code, if the person knows how to write good code, does it fit

into the project. Then the person is proposed to become a committer and then an

election takes place.” Additionally, Wechner explains the importance of preventing

code ownership in order to be able to replace parts of the source code with improved

solutions: “There isn’t a code ownership either. In effect we try to avoid this on

purpose. [What is the consequence of code ownership?] You would become

dependent on people. Code owners could prohibit changes in their code. We want to

be able to throw out code if there is better one.”

4.10.2. User Interface Design
Every interviewee mentioned in the discussion at least once the high influence of the

graphical user interface on the attractiveness of the software. Wesdorp for example

counts, next to the code quality, the visual appearance of the Kupu editor as one of

the strengths of the project: “I think it’s partially the appearance, what it looks like

and what it feels like for users.” And Hinderink points out the relevance of the GUI

concerning content editing in the application and its customizability for end users:

“The graphical user interface is one of the features that users like most about

TYPO3. Authors, e.g. have the possibility to edit texts inside the front end, so-called

‘edit while you serve’. In addition the highly configurable user interface of the back

end is very popular for customers.” One reason why the appearance was always

taken care of was the early presence of somebody responsible for the graphics: “So

all the visual things made a big difference, icons and so on. Very early there was

Emil from Holland who created these icons about in 2001.” In Plone, it was even

part of the initial motivation to create a software with a great user interface: “Zope

only serves components of applications but the CMF already offered content

management, workflow procedures, a portal system. But the problem was that CMF

was unusable from a visual and usability point of view. So I gave up on it because

you couldn’t use it out of the box. Two other guys, Alexander Limi and Alan Runyan

who met via IRC, said the same. Limi said CMF looks bad and Runyan agreed

although mentioning the concept would be really great. They joined with the

intention to create a cool user interface for the framework. So Plone was born, about

Promotion of Community Building Page 101

February 2002.” For Bühlmann the user interface was indeed the main factor in the

decision to work for Plone: “The nice layout was the key point of it, although I

wasn’t quite content with the standard layout of Plone. It can still be improved but

basically it looked good and this was the main reason I decided to keep on working

with Plone.” And talking about successful OSPs even Rothfuss knows and mentions

this uniqueness of Plone: “Plone for example grew from zero to one hundred in a

very short time. They understood what was needed to attract attention, like a very

good CSS and other things that are not really related to the code.” The Magnolia de-

velopment team also realized the high relevance of a user friendly graphical interface

of the content management system so they invested a lot of effort into this part. Kraft

is happy about the fact that the audience appreciated this benefit and states about the

mailing list feedback: “Yes, lots of it [feedback] via the mailing list. Mainly it’s

positive, especially concerning the GUI.”

4.10.3. Installation
For a new user the first intense contact with the OSP usually comes during the in-

stallation procedure. Already this can be a barrier as Farstad mentions: “Of course

you need to get the software running.” So next to many other things it is important to

offer an easy way to install the application as Rothfuss recommends: “Many projects

don’t understand that they have to care about the last mile. Other projects who

understand this like Plone are very successful. There we can learn how important it

is to invest time to provide for easy installation and some out-of-the-box appeal.

Even if a project has a great architecture but it’s difficult to install, only a small

number of people will be interested in it.” So it is not astonishing for OSPs with a

broad user basis like TYPO3 that the most important document is the installation

manual: “There is no more important document and there are always lots of

questions about it.” Therefore there is also a mailing list specifically for installation

issues with TYPO3.

Many OSPs include a demo installation to facilitate the introduction to the usage of

the application. Kraft had a positive experience with this because it lead to fewer

installation questions as he states: “Installation issues are very small compared to

what I read on other CMS mailing lists. We’ve got a demo installation which you can

install with a double click and then show how it’s all done.” After installation,

Promotion of Community Building Page 102

configuration has to be done which again needs particular knowledge about the

software. Especially in applications that require further integration efforts like the

Kupu editor technical questions are asked often: “From users I don’t get much

feedback but from developers and integrators I often get complaints about it being

quite hard to integrate as I said it. It’s sort of hard to configure because you don’t

have a configuration file where you can turn things on and off. You really have to

hack a bit of JavaScript.”

Conclusions Page 103

5. Conclusions
Having looked at the various aspects concerning initialisation of OSPs and onto the

ones concerning already running projects now certain conclusions can be drawn.

First, a list of human and project based properties shows the optimum set-up for a

new OSP. Second, a framework of actions for ongoing projects outlines possibilities

of OSP leaders to positively influence community building. Thirdly, two specific

conclusions identify other components for long-term OSP success. Fourthly, a short

list of do’s and don’ts for OSP leaders gives some hints how the interviewed persons

successfully acted in their tasks of directing their OSP. In the end, overall comments

of this research and ideas for future investigations terminate this paper.

5.1. Successful Initialisation
Successfully starting a new OSP is a very complex process, which isn’t completed by

just publishing a download link of source code on a website. Its success vastly de-

pends on the project’s characteristics and on the human beings behind the project. To

summarize the findings of the interview responses in chapter 3 the human and project

based properties positively influencing community building are listed once more in

table 4 together with a “rationale” and a “challenge.” “Rationale” contains a short ex-

planation of the property describing its relevance concerning community building.

“Challenge” briefly describes where the difficulty lies in realizing the leadership skill

or precondition of the project.

Conclusions Page 104

Leadership Skills and Behaviours Positive Preconditions of the Project
Assertiveness
Rationale: To ensure code quality, announced milestones,
community culture and other critical elements of an OSP a
strong but thoughtful leadership is necessary.
Challenge: Since OSPs are based on the voluntary work of
contributors and thus their personal motivation it is a delicate
task to direct people and enforce decisions.

Programming Language
Rationale: The choice of the programming language determ-
ines part of the image, the scope of applicability, the potential
developer community and other aspects of the OSP.
Challenge: Since programming languages have huge syntact-
ic and semantic differences a change at a later stage in the
OSP is virtually impossible.

Commitment
Rationale: Every leader of an OSP must show an above-aver-
age dedication to work on the project investing time for the
further development of the software and the community.
Challenge: The huge engagement of the OSP leaders requires
a lot of time for which they usually aren’t paid because it’s
non-productive work in a monetary sense.

Open Source License
Rationale: The type of open source license highly influences
the future of the community because it may promote resp.
force or inhibit resp. unbound community building.
Challenge: For legal reasons and community habits it is un-
usual to change the license of the OSP later on so serious
thought has to be given to the choice.

Communicativeness
Rationale: To spread the large amount of knowledge OSP
leaders need to communicate well in order to motivate poten-
tial contributors to get into the project.
Challenge: Serious written communication is very laborious
in general and specifically in OSPs not the main skill of many
software developers.

Great Initial Source Code
Rationale: The initial source code determines the attractive-
ness of the OSP by letting potential contributors estimate its
potential thus influencing their decision to join.
Challenge: It is difficult to determine the best moment when
to publish the project since if it’s too early the potential isn’t
revealed and if it’s too late the demand might have gone.

Experience
Rationale: In order to give an introduction for beginners and
also to help in complex problems OSP leaders need a vast ex-
perience with the source code of the project.
Challenge: Since OSPs usually consist of thousands and
more lines of code programmers must be part of the develop-
ing community for a long time to gain sufficient experience.

Public Demand
Rationale: The usefulness of the software for the intended
audience defines its interest in the OSP and thus determines
the motivation to join the community and start contributing.
Challenge: It’s impossible to anticipate the future demand for
an OSP. The only possibility is to adapt the software to the
skill level of the assumed users to improve the chances of
success.

Helpfulness
Rationale: To attract newcomers and facilitate their entrance
into the project helpful leaders are necessary since often there
isn’t enough documentation available yet.
Challenge: Time of skilled OSP leaders is limited so inter-
ested persons must show sufficient personal effort before they
can expect support from experienced community members.

Degree of Novelty
Rationale: New OSPs can be radically innovative, partially
innovative by introducing new features or marginally innov-
ative by improving existing similar applications.
Challenge: One way to increase the novelty of a project is to
implement new standards and technologies but then there is
the risk of them not becoming mainstream.

Openness
Rationale: For OSP leaders openness is necessary in various
forms like being open for beginners and new ideas and to
communicate openly as far as possible.
Challenge: Openness is not a basic human mentality so for
example to accept solutions of others or to be open to leave a
project reqquires a high degree of maturity of the leader.

Applicability
Rationale: The breadth of applicability determines the poten-
tial user community of the OSP so e.g. letting the software
run on various platforms increases the audience massively.
Challenge: Frameworks intend to be broadly applicable but
on the other hand often require a high amount of initial effort
and a lot of programming.

Patience
Rationale: The growth of a healthy community takes long
since experienced contributors have to introduce newcomers
and show them the software and the community culture.
Challenge: Eager developers not only need to endure the low
growth rate but also should be patient enough to e.g. answer
similar beginner questions several times.

Level of Communication
Rationale: In the beginning nothing is known about the OSP
and the number of involved people is small so especially in
the beginning a high level of communication is important to
attract new contributors.
Challenge: Usually the OSP founders prefer to invest time in
further development instead of into writing documentation –
also since it becomes obsolete because of software changes.

Personality
Rationale: The charisma of OSP leaders helps in communica-
tion and by fascinating potential contributors for their project
and thus increases the attraction of being part of the com-
munity.
Challenge: Skilled developers may not have a naturally
charming character so they need to substitute it with other
specific traits of personality while still remaining themselves.

Conclusions Page 105

Leadership Skills and Behaviours Positive Preconditions of the Project
Presence
Rationale: A constant presence in the chat room, mailing list
or other communication channel motivates new contributors
to join the project and not feeling left alone.
Challenge: It requires conviction for the project and a long-
lasting endurance of the leaders to stay in the OSP over sever-
al years and keep on going to be active in the community.

Programming
Rationale: High programming skills are required of all OSP
leaders since e.g. to be able to help out in architectural issues
an in-depth understanding of the software is necessary.
Challenge: Besides a certain natural programming talent also
a high education and long time experience in software devel-
opment is required to fulfil this leadership skill.

Responsibility
Rationale: Compared to developers interested in a specific
topic the OSP leaders bear the overall responsibility for the
success of the project including support of new contributors.
Challenge:There are various demanding aspects such as an-
swering leftover emails or being responsible for a clean and
friendly communication and atmosphere.

Visionary
Rationale: OSP leaders need to be able to communicate a vis-
ion for things that are not yet realized so a clear direction can
be fixed as to what and how the project has to grow.
Challenge: Visionary people need to be creative and generate
new ideas but also have to be patient if e.g. the project is not
advancing by the expected speed.

Table 4: Human and Project Based Properties for Successful OSP Initialisation

5.2. Subject-Level Promotion Matrix
The subject-level matrix is the consolidation of all interview responses concerning

promotion of community building. For each “spanning subject” there are summaries

for every level of community building structured into goals of this subject respect-

ively the reasoning why it is important to undertake, and short conclusions on how to

promote community building in ongoing OSPs.

Conclusions Page 106

Recruiting Collaboration Production

M
od

ul
ar

ity
Goal: Extensions or plug-ins enable
external contributions without much
knowledge of the source code thus at-
tracting different kinds of people and
leading to a broad applicability of the
OSP.
Conclusion: The structure of the OSP
should be extensible and all the neces-
sary resources like documentation of
plug-in development and extension
manager should be made available.

Goal: Because of modularity of the
software, specialization for certain
parts of the program is possible
among the developers. Thus they are
able to freely contribute new features
to the project whithout dependence on
the core developers.
Conclusion: Contributed extensions
should undergo a quality assurance
process by experienced developers in
the community. Also the documenta-
tion of the extensions must be as-
sured.

Goal: Modularization makes large
software tightly structured defining
clear dependencies among the mod-
ules. When most of the functionality
is put into external components the
kernel remains small and robust. Ex-
ternal software can be plugged in and
can also be used in other OSPs.
Conclusion: The architecture of the
OSP has to be designed smartly to
give the source code a high level of
modularity.

D
oc

um
en

ta
tio

n

Goal: Documentation fulfils the very
important function of knowledge
transfer thus enabling newcomers to
use the software. Also it presents an
easy way to start contributing when
inexperienced users study the soft-
ware and write documentation materi-
al.
Conclusion: To keep the overview it’s
necessary to focus on a few but al-
ways updated and focused document-
ation artefacts.

Goal: Creating qualitatively high doc-
umentation is a laborious task where
volunteers are usually rare. Still it is
essential to find people in the com-
munity who create complete and well
structured documentation.
Conclusion: The leaders should create
incentives for community members to
write documentation, e.g. by donating
money, offering public acknowledge-
ments or organizing publishers who
print the documentation.

Goal: To ensure the comprehensibil-
ity and thus the longevity of the soft-
ware the source code has to be com-
mented completely. Especially in
frameworks a complete and updated
software reference manual is import-
ant to give programmers support to
develop their own applications.
Conclusion: The API of the software
has to be documented completely;
thus incentives for the core developers
to accomplish this are necessary.

R
el

ea
se

 M
an

ag
em

en
t Goal: Frequent releases communicate

the progress of the OSP to the public
raising the attractiveness to particip-
ate in the project. New features and
improvements of the software need to
be published visibly for every release.
Conclusion: Release often but not too
often implementing the patches sub-
mitted by contributors. The task of the
release manager can also be accom-
plished by community members, so
they have to be motivated to take over
this responsibility.

Goal: New versions of the software
have to be released in an appropriate
way taking into account the interests
of the active and inactive user com-
munity.
Conclusion: Depending on the pro-
gress of the OSP and the size of the
community a certain release manage-
ment process has to be agreed upon
defining, among others, feature
freezes and development branches. It
should be taken into consideration to
release on a regular time basis.

Goal: The stability and, if possible,
the backwards compatibility of a new
release are very important. To guard
the customizations of user implement-
ations a clear distinction between ex-
ternal and internal API is essential.
Conclusion: To guarantee the on-time
shipping of a new release a feature
freeze has to be enforced. Migration
scripts may update customizations to
higher releases. A clear API policy
helps to distinguish between internal
and external API.

C
ol

la
bo

ra
tio

n
Pl

at
fo

rm

Goal: A High ranking on collabora-
tion platforms like SourceForge in-
creases visibility of the OSP. On the
other hand its own branded website is
also important to give the project a
certain individuality.
Conclusion: OSP leaders should act-
ively use the services of collaboration
platforms to raise the ranking of the
project. Also the project should be lis-
ted on all well-known platforms.

Goal: The responsibility of a collab-
oration platform is to provide modern,
fast and reliable services for the work
on the OSP. Also the development
team requires a certain freedom to
configure the platform for their needs
to efficiently work on the software.
Conclusion: Depending on the stage
of the OSP an appropriate free collab-
oration platform has to be chosen or a
project-specific one has to be con-
structed.

Goal: To improve the production
level of the OSP the collaboration
platform has to support the develop-
ment process of the software as much
as possible.
Conclusion: A state of the art and
highly reliable revision control system
is essential for the development pro-
cess so the collaboration platform has
to provide this.

Ph
ys

ic
al

 M
ee

tin
gs

Rationale: Presentations of the OSP
show the people behind the project
and also are stimulating moments for
visitors to try the software for the first
time. Personal contacts to the com-
munity spreads confidence and motiv-
ation.
Conclusion: Organizing fun meetings
and other social events raises the
community spirit and the attraction of
being part of the project. So there
should be creative leaders who choose
special places for sprints. In addition
participating in open source exhibi-
tions is a good way to meet potential
contributors.

Rationale: Personal relationships of
contributors are intensified enabling
better collaboration. Meetings are also
a good way to accomplish knowledge
transfer from experienced members to
potential contributors. In addition,
community meetings serve to take im-
portant decisions concerning the OSP
and its organisation.
Conclusion: Conferences and small
leadership meetings are the best way
to improve collaboration inside the
project. By organizing this fairplay is
very important and also group dynam-
ics must be taken into account.

Rationale: The idea of a Sprint is to
work intensively on the source code
and advance the software by doing
bug fixes, architectural improvements
and implementation of new features.
Conclusion: Developing in the pair
programming mode with a modern in-
frastructure supports the working en-
vironment of the Sprint. In addition,
planning by setting specific goals for
the event helps to stay focused on the
assignment. Whether a Sprint is really
necessary for the OSP depends on the
size and structure of the community
and the software.

Conclusions Page 107

Recruiting Collaboration Production

F
ou

nd
at

io
n

Rationale: An OSP can benefit from
the good reputation of a well-known
foundation thus increasing the confid-
ence of users. The association also of-
fers a secure and reliable open source
license, a correct credit system and
the protection of the OSPs’ brands.
Additionally it may bundle the mar-
keting power of the community and
support collaboration among compan-
ies in the OSP.
Conclusion: The OSP should be part
of a known foundation or initiate its
own if there isn’t an appropriate one.

Rationale: A foundation has to bring
stability into the project and to
smooth the fluctuation of people. It
also organizes the various tasks in the
OSP, installs democratic structures
and thus creates more transparency.
By collecting donations the founda-
tion acquires the ability to hire people
if deemed necessary by the com-
munity. Especially important is the
legal protection of the developers.
Conclusion: New associations should
follow best practices of established
and successful foundations.

Rationale: Besides protecting the
software developers against law suits
the foundation also has to secure the
copyright of the OSPs’ source code.
In addition it may canalize resources
to support the most active core de-
velopers so they can concentrate on
their work. The foundation is also re-
sponsible to provide a state-of- the-art
collaborative infrastructure for the
OSP.
Conclusion: The OSP leaders are re-
sponsible for improving the function-
ing of the foundation continuously.

In
te

rn
at

io
na

lis
at

io
n

Rationale: Going global with the OSP
vastly increases the number of poten-
tial contributors. Additionally it offers
an easy introductory opportunity for
newcomers by letting them work on
translations. Also knowing and visit-
ing people from all over the world is
attractive for newcomers.
Conclusion: To save time in later
software adaptations an international
community for the OSP should be
planned from the start. Among others
it requires all communication to take
place in English.

Rationale: The diversity of the com-
munity may help to overcome cultural
phenomena like not-so-communicat-
ive people in the originating country.
Also knowing of people working on
the OSP all over the world at any time
of the day has a highly motivational
influence on all contributors.
Conclusion: To maintain a friendly
atmosphere of communication con-
versations have to be polite and re-
spectful. Also it may be necessary to
answer questions about the different
legal environments in each country.

Rationale: The software should be us-
able in various different languages
and cultural areas.
Conclusion: Internationalisation of
the source code base involves the
translation of the user interface and
documentation of the software.

Sp
re

ad
in

g
th

e
W

or
d

Goal: General marketing activities to
raise the visibility and improve the
image are also important for OSPs.
The goal is to achieve as much publi-
city as possible on various open
source platforms, directories and news
channels.
Conclusion: The OSP has to be pub-
lished on all popular open source
channels, especially those meant for
the technologies of the project. Writ-
ing press releases facilitates reporting
about the project so the probability of
publications increases. Companies
who own the project or offer services
for it also should invest large effort
into product marketing.

C
re

di
t S

ys
te

m

Goal: Instead of paying money OSPs
can offer raising the contributor’s
reputation. So the attractiveness of an
OSP raises when participation in the
community is acknowledged.
Conclusion: All contributions should
be credited to the corresponding au-
thors offering them a possibility to
present themselves and assure their
references.

C
om

m
un

ic
at

io
n

C
ha

nn
el

s Goal: For efficient collaboration the
optimum mix of communication
channels is essential. Therefore, OSP
leaders have to be familiar with
strengths and weaknesses of each
communication instrument to deploy
the appropriate ones according the
community’s demands.
Conclusion: The OSP leaders have to
evaluate the influence of IRC, mailing
lists, Blogs, websites and other com-
munication means on community col-
laboration. Then they have to focus on
suitable ones and adapt them accord-
ing to size and progress of the project.

Conclusions Page 108

Recruiting Collaboration Production

C
om

m
un

ity
 S

tr
uc

tu
re

Goal: The investigated OSPs show a
broad variety of stages of organisa-
tion. Therefore the appropriate struc-
ture has to be found for each project
individually corresponding to its size
and progress.
Conclusion: Anticipating the organ-
isational structure of an OSP has
mostly failed. So the leaders can only
react to the changes in the environ-
ment and should not plan large organ-
isational changes in the OSP without
need.

Ta
sk

 L
is

t

Goal: The idea of a task list in an
OSP is to motivate people to contrib-
ute to the project what is actually
needed thus giving them a hint on
how to start participating.
Conclusion: The leaders should try to
introduce a task list or a list of open
issues even hough people might not
have asked for it. It is important to of-
fer small pieces of work in order not
to overstrain motivated contributors.

F
ea

tu
re

 a
nd

 C
od

e
Q

ua
lit

y Goal: Obviously software quality
should be as high as possible. This
holds particularly for open source pro-
jects where many different developers
have to work with the available code.
Conclusion: The leaders must accept
qualitatively high source code only to
ensure the overall software quality.
Therefore code ownership is to be re-
jected. Also the software should
provide sufficiently useful features so
the initial effort of a new developer to
get into the project is justified by the
correspondingly high benefit.

U
se

r I
nt

er
fa

ce

D
es

ig
n

Rationale: Although the actual value
of a software is derived from its func-
tionality the graphical user interface
still plays a major role in the handling
and overall look and feel of the ap-
plication.
Conclusion: To increase the attract-
iveness of the software, especially in
highly competitive environments, it is
essential to invest effort into the
graphical user interface. This can be
essential for the overall usability of
the software.

In
st

al
la

tio
n

Goal: The installation process has to
be perfectly organized concerning
technical installation and documenta-
tion of every single step.
Conclusion: To test this procedure
OSP leaders should investigate how
users usually install the software.
Feedback on how to improve this pro-
cess can be very helpful. Also offering
a demo installation gives an easy way
to get into the program.

Table 5: The Subject-Level Promotion Matrix of Community Building

Conclusions Page 109

5.3. Interpretations of Interview Responses
The following drafts of two hypotheses were neither expected nor explicitly investig-

ated during the interviews. They are the result of interpretations of the interview re-

sponses describing certain tendencies in OSP communities. The first one is the as-

sumption that mainly demand driven actions by OSP leaders will be readily accepted

in the community. The second interpretation assumes the longevity of an OSP de-

pends at least partly on the degree of dependence of community members on the pro-

gress of the OSP.

5.3.1. Demand Driven Actions
The triggering event of organisational actions by OSP leaders turns out to be mostly a

response to a change of the environment in the community and not an anticipation of

that change. Hinderink gives an example of such a reaction by explaining how the in-

stallation of a quality assurance process for control of the submitted extensions was

initiated by the community: “I’ve realized there is some regulatory system. The

problem was recognized by the community itself and so collaboration on this issue

started.” He also experienced the opposite, trying to install organisational structures

in advance: “There were a lot of attempts at organising the community. Once it was

tried to build teams for all different topics. And we must say this actually failed.”

The same happened in Plone where new mailing lists about specific topics were

opened only when demand was high enough: “Later on others were added, one for

each specific product. But only step-by-step: when a topic appeared again and again

a new list was opened.” Also the detailed process of adding new features to Plone as

it is in use today wasn’t an anticipated rule but a necessity at that moment of time:

“That was the time when companies had problems with projects when Plone didn’t

work any more because of these side effects. So it was decided that no one is allowed

to add a new feature without first writing a PLEP, a description of the feature.” And

concerning API policies to separate internal and external architecture there needs to

be distinction between younger projects that still undergo lots of changes and older

ones where a large community is behind as Rothfuss explains: “So younger projects

with not so many users usually don’t have these deprecation policies. It’s more

important for older ones that are used extensively, like for example the Apache Web

Server.” And speaking about the organisation of Sprints and other events around an

Conclusions Page 110

OSP Wesdorp would organize something only when the community demands it: “As

it looks like for right now at least for Kupu 1.x we will never have a Sprint I think. I

mean if people are interested, I’m interested too.”

Such answers implicate there should be no organisational changes in an OSP unless

there is an acute problem to be solved or a clear request by the community. So it may

be assumed that mainly reactions, say demand-driven changes, are successful because

a solution is wanted. Contrary to common management practice, anticipating prob-

lems may result in new problems. This phenomenon might be a consequence of the

voluntary nature of open source communities because in commercial software engin-

eering environments management decisions can be enforced where as in OSPs no one

has authority above others.

Wesdorp summarizes this hypothesis by talking about his vision for Kupu: “We

don’t have a todo list for the community or a real direction in which we want to steer

the community. We just let it flow and see where it ends. Currently this works quite

well, but maybe later on we want to change that if something is going down with

Kupu for some reason. [...] I hope it will last longer and I hope we can still grow,

but I don’t have this roadmap where we are going to - which is probably a good

thing too, I mean, we are really open to new ideas, open to new features. I hope

people understand that and are willing to take that up.”

5.3.2. Dependence on the Progress of the Project
The life expectancy of an OSP seems to be related to the degree of dependence by the

OSP contributors on the progress of the project. Wechner states there are basically

two different types of OSPs, those initiated and conducted for fun and on spare time

usage and those where people actually make a living on, like e.g. Lenya: “Here you

see the difference between ‘hobby’ projects and those that are used in a commercial

area. You will have some dependence on your customers and can’t just say we will

change the API like that.” Plone is another OSP, which is mainly used in profession-

al environments: “The Plone community is special. Many members have families and

many have their own company offering Plone services. So in the beginning there was

nobody who did it as a hobby or during his studies. They all used Plone and Plone

services for a living.” Then Bühlmann adds the important point concerning his and

others’ strong personal interest in the progress of the project since it is needed to

Conclusions Page 111

finance a living: “If I own a company offering Plone I do have a strong interest that

it gets developed further. But one who does this as a hobby or a student who just

likes it, doesn’t care about it any more once he finishes his studies and starts to

work. He might even forget it and stop developing. People like this get lost, people

who do open source development for fun. It does happen, of course, in many open

source projects people write an application just for fun. But Plone really has a

business orientation. We want to develop a system that is so good it can top

commercial products.” And there is a similar situation in the Cocoon community

where members also don’t leave so quickly since their business depends on this par-

ticular OSP: “Maybe it’s because many members of the Cocoon community also do

business with it and have a company. So if something goes wrong you can’t just say

‘I’m leaving.’ because it’s not just a hobby but your business. I think that’s the

reason why we take care to have a clean communication. I see other projects which

are very different. They have these flame wars, nobody interferes and it gets worse

and worse. This happens very seldom in Cocoon and if it does there’s always a quick

reaction like ‘Here you can’t talk like this. Please come back to the right level.’

That’s very good.” And obviously the situation is the same with the projects founded

by a company because money was invested in development and marketing and won’t

be given up as quickly as some student’s time.

These answers show the larger the contributors’ dependency is on the ongoing of the

project, the more they untertake to continue the project and remain part of the com-

munity. Thus it can be assumed that projects where people earn a living on have bet-

ter initial conditions and a higher probability to be continued in the long term than

those where people work on it just in spare time.

5.4. Do’s and Don’ts for OSP Leaders
The answers of the interviewed OSP leaders often showed distinct repetitive sugges-

tions of how such projects could be successfully managed. These propositions are

summarized in the following seven do’s and don’ts for OSP leaders to give short and

memorizable hints.

Conclusions Page 112

Do it for yourself. “As founder of a community you have to protect yourself. If you count on people’s
contributions and thankfulness you’ll fail for sure. You have to do an open source
project for yourself, not counting on outside rewards. If there are acknowledgements
that’s nice, but you shouldn’t be depending on them.” (Hinderink)
Compared to the number of people using a certain open source software only a small
part of them will ever give feedback. So to stay motivated in an open source project one
has to have a personal profit from it, either in a way of doing business, by the joy of
programming or in any other kind of satisfaction.

Don’t loose yourself in
perfectionism.

“I believe it’s important to release frequently, as Eric Raymond said. You shouldn’t al-
ways say: ‘Oh let’s do this also and that and so on.’ That way you never get to a re-
lease. Even if you fix something it’s possible to have side effects, create a new bug and
so on. So it’s better to fix some things and then do a release. Then you see stuff that
doesn’t work so you fix it and release it again.” (Wechner)
Most users of open source software only perceive the program in its released form so
they never know about attempts at new features that didn’t make it into a stable release.
So OSP leaders have to release often and bravely and accept the responsibility for the
well-functioning of the software thus creating bug fixes when errors occur.

Do accept others’
ideas and work, too.

“I saw that Cocoon didn’t fit our needs exactly but accepted that because it was better
building on something that already had a community than doing my own thing.”
(Wechner) “[It’s important] not trying to be too stubborn - that’s probably a de-
veloper’s thing, lots of developers are very stubborn about their project. You have to
take your time to consider what people think because what people think is important.”
(Wesdorp)
All successful OSP initiators are very creative and committed persons who contribute a
lot to the open source community. But talented developers are also often quite stubborn,
wanting to program all on their own not looking at other peoples’ code. So even if one
has the gift of being a skilled OSP leader he should still consider appreciating the ideas
and work of others.

Do communicate
openly.

“You always had to say ‘Write it in the mailing list. Write it in the mailing list. Write it
in the mailing list.’ People are not used to open communication, they usually commu-
nicate in a closed way.” (Wechner)
During most of the year contributors of an OSP don’t meet so they have to rely on elec-
tronic communication. This requires them to communicate in written language so regu-
lar practice is important to maintain a high level of communication in the community.

Don’t speak of ideas
but contribute

solutions.

“We noticed that ideas are cheap but realization is costly. This means if somebody has
a great idea we ask: ‘Oh cool, so when do you start?’ That’s the usual question. It’s
much better if people come with at least a prototype they already programmed to
demonstrate the concrete idea.” (Delacrétaz)
Usually in OSPs there is no lack of ideas how to further develop the software and how
to improve the collaboration. Ideas are worthless, however, if there is nobody who real-
izes them. So as OSP leader one has to be active in contributions, either in the form of
code or in communication, in marketing services, in infrastructure work or other helpful
activities.

Do behave nicely. “I do think you can steer it [the success of a project] a bit as long as you make sure
that you don’t piss off new users, don’t say nasty things about people and try to take
your time to actually help people to get into the project. That way you can definitively
stimulate getting a community growing.” (Wesdorp)
Since a large part of the engagement in an OSP community is caused by intrinsic
motives people principally want to care about the progress of the project and not about
internal conflicts. Consequently it remains the responsibility of the OSP leaders to
maintain a motivative communication culture in the project and to be nice themselves,
even if a so-called flame war58 should break out.

Do serious marketing. “And of course you have to do a lot of marketing, make sure that you are known on the
appropriate open source channels. Like for instance Freshmeat, mailing lists and so
on. Of course you need an accessible and a bit of a clean website, screenshots and so
on.” (Wesdorp)
Usually, the absence of a large marketing machinery is one of the major disadvantages
of OSPs. Large enterprises have the power to polish the image of a software even if it is
technically inferior to open source alternatives. Therefore it must be one of the major
goals of all community members to help with effective and truthful marketing for their
software.

Table 6: Seven Do’s and Don’ts for OSP Leaders

58 Definition flame war: When an online discussion degenerates into a series of personal attacks

against the debators, rather than discussion of their positions. A heated exchange. Enzer (2005)

Conclusions Page 113

5.5. Future Research and Closing Comment
As shown in the beginning this paper largely follows the process of developing the-

ory from case study research proposed by Eisenhardt. Although various suggestions

on how to execute such qualitative research have been applied in this work some had

to be abandoned because of the lack of time and resources. Especially to harden the

conclusions mentioned in this chapter it would have been helpful to add quantitative

data to the qualitative results, e.g. the number of downloads of each project during

the last 12 months or the number of subscribers to the mailing lists of each OSP. An-

other possibility would have been to ask several leaders of the investigated OSPs to

approve or disprove statements and thus to be able to corroborate the hypotheses.

Other community members possibly would have introduced new perspectives on the

project widening the perception of the OSP. Moreover, all the investigated projects

belong to the software category of web applications and frameworks so it would have

been interesting to analyse other kinds of OSPs, too, to check the general applicabil-

ity of the conclusions.

Further research could lead to the definition of distinct success factors for OSPs res-

ulting in a list of properties that successful projects need to possess, e.g. a certain size

and diversity of the developer community or a distinct set of communication chan-

nels. So the procedure to select the projects to be investigated could be based upon

such success criteria providing an objective rather than a convenient list of OSPs.

Taking into account previously determined properties particularly suitable represent-

atives of an OSP could be chosen and interviewed. The conversations could again

treat the spanning and specific subjects in OSPs looking specifically at the three dis-

tinct levels of community building and extracting successful actions, which are ex-

pected to lead or have led to healthy community growth.

Concluding this paper the author expresses his hope that this writing has contributed

a little bit to the future thriving and prosperity of the open source community and

their great software projects. Any feedback on this research is warmly welcomed.

Appendix Page 114

Appendix
To provide complete information about the conversations the entire interviews are

listed in the following. This seemed important since not all statements could be cited

in the paper and also because some readers might only be interested in particular

OSPs. Again it needs to be remarked that although the translations were done with

great care not all nuances could be transferred to the English language. Also all of the

interview partners speak English very well and thus probably would have formulated

answers differently if the interviews had been conducted in English.

Interview with Bernhard Bühlmann, Plone on 17 November, 2004

Please tell me about yourself, your education, and how you
came to the Plone project.
I studied computer science at the University of Bern and also
did a PhD thesis about 3D grafics there. We developed a
C++ graphics framework which we already should have put
open source. But somehow we didn’t do it although there
were no such 3D graphics frameworks around at the time.
I also worked at IBM for about 7 years during my studies
since the beginning of the nineties.
This was before the beginning of Linux.
Yes, in this time the first minix came out, the first free Unix
distribution. I remember during my time at IBM a colleague
of mine installed it on a PS 2 system. This was in the begin-
ning time of Linux.
Did you hear about Richard Stallman back then?
No, I wasn’t much interested in open source software. But we
already used it at IBM installing it on different systems. So I
got into contact with OSS. But then it wasn’t yet in the
strategy of IBM because they thought they wanted to earn
money with Unix. They still believe this today I think, the
AIX operating system, but now they turned over to Linux,
too, because of marketing reasons.
Then I went to the computer services of the University of
Bern working on a super-computing project. Later on I went
to Zürich for two years to a start-up company Perspectix
where we developed 3D graphics. After this I came back to
Bern but - luckily - didn’t find a job right away. So I got the
idea of doing my own business in 2001. We focused on team
platforms, on collaborative work over the Internet, in the be-
ginning for construction projects. We started with Microsoft
software, Sharepoint, a very good software. I installed a serv-
er with this software and rented it to customers using the
ASP (Application Service Providing) business model. But
then the customers’ demands became more and more diffi-
cult to handle because I couldn’t customize the software
since the source code wasn’t available. It was a powerful
software but I couldn’t adapt it to the customers’ needs.
So I began to search for an alternative in the area of open
source. I used to work with Python so I came to the Zope ap-
plication server. I wrote my first Zope application which did-
n’t work although I just typed it from a book. This wasn’t a
good experience. Nevertheless I felt it’s a good platform.
So you actually did learning by doing?
Yes, there were one or two books so I looked up how it works
and quickly realized the high potential of the Zope applica-
tion server. One can realize things very quickly because lots
of applications are already available and are configurable
through the web. I started to develop a CMS based on Zope.
Even today there’s still a website working with it. But I real-

ized it doesn’t work out well in the long run working on your
own with your CMS. I again started to look for an appropri-
ate software and tried a couple of Zope applications that
already had a community to get support and experience of
others.
What was the main criterion for your final choice?
Although I advanced very quickly with my own CMS and
everything worked fine, bug fixing and testing new function-
ality was very time consuming. So product development got
difficult. Also the architecture wasn’t well thought-out be-
cause I had just started programming without much planning.
It worked exactly as I wished but extensibility and mainten-
ance weren’t good so I looked for an alternative. Very soon I
found the so called CMF, an additional product of Zope, a
Content Management Framework. This included the founda-
tion classes of a CMS so it was again a layer higher than
Zope itself. Zope only serves components of applications but
the CMF already offered content management, workflow pro-
cedures, a portal system. But the problem was that CMF was
unusable from a visual and usability point of view. So I gave
up on it because you couldn’t use it out of the box. Two other
guys, Alexander Limi and Alan Runyan who met via IRC,
said the same. Limi said CMF looks bad and Runyan agreed
although mentioning the concept would be really great. They
joined with the intention to create a cool user interface for
the framework. So Plone was born, about February 2002.
Quite soon the first release was made available. I downloaded
it but found it was unusable because it was way too slow. But
I realized the potential behind it. The nice layout was the key
point of it, although I wasn’t quite content with the standard
layout of Plone. It can still be improved but basically it
looked good and this was the main reason I decided to keep
on working with Plone. The two initiators of Plone met for
the first time in Charleroix, Belgium, at the Euro Python
Conference 2002 where I also went. In a small room next to
the conference they presented Plone during 45 minutes to
about 20 persons. They presented the basic idea and the ar-
chitecture behind it. Somehow, I don’t know why, lots of
people got attracted by the project. I believe the main reasons
were that Zope already was an elaborate application server,
CMF worked as a stable framework, and Plone had a good
layout. So in other words the entire product had a high stand-
ard in every aspect.
Did anything comparable already exist at that time?
Yes, there was another product called CPS, Collaboration
Portal Server of Nuxeon company from France. They did the
same, develop their own portal based on CMF. But Plone,
apparently, was better in the initial phase so more people got
into Plone than into CPS.
Was CPS also open source?

Appendix Page 115

Yes, I believe so. At least you can download the source code
freely. But I don’t know for sure if changes can be returned
to the project.
Plone had a good release management from the beginning.
Right from the start they had created a SourceForge project
and let everyone do CVS commits into the project. So from
the beginning they gave everyone the chance to participate in
the project.
Are the two founders of Plone still in the project?
Yes, they are.
Are they both from Belgium?
No, Alexander Limi is from Norway and Alan Runyan is
from Houston, Texas. They physically met for the first time
in Belgium. Before that they only had contact via IRC.
IRC is important. It is actually the backbone of Plone. I’m
seldom in the chat room but just yesterday I visited there be-
cause I had downloaded a software the day before. It in-
cluded a file I didn’t know the extension of. By coincidence
Alan Runyan was in the chat so he could explain the prob-
lem: In the bundle I had downloaded a product was missing
so it didn’t work. He told me to add it to the bundle and up-
load it right away to SourceForge. So I did correct the error
by entering the chat, getting the information, fixing the bug
and uploading the correct bundle.
Do you also use SourceForge as your CVS server?
In the beginning, yes, but now they have a Subversion repos-
itory. They try to install their own infrastructure for version-
ing, project management and so on. Nevertheless lots of
things are going via SourceForge.
Are mailing lists and news still on SourceForge?
I don’t know where these things are. The problem of Source-
Forge is that in the past it wasn’t working reliably all the
time. There were times when check-in wasn’t possible. The
availability just wasn’t good enough - no wonder with
70’000 software projects! This was very annoying for the
Plone team so they said let’s build our own infrastructure.
But for a start I believe SourceForge is perfect.
What are your activities in the project? You also have com-
mit access as you mentioned.
Well, I have to admit, I’m not the typical open source de-
veloper because I don’t develop a lot. But in the beginning I
did testing by putting one of the first Plone sites online. It
was the website of a uni hockey team. They needed a new
solution so I said I’ll do it in Plone. I installed the website
and thus could give feedback pointing out errors and so on.
Like this I could help to improve the product by applying it
to a real world project.
This means you could access the CVS repository from the
beginning?
Yes, it was never a problem. They held the interesting posi-
tion to be open to everyone. Still they had kind of a code re-
view. For example if somebody checked in something that
didn’t work first of all they got a telling on the mailing list.
And then these changes immediately got deleted. In this way
a very open culture was developed where criticism is possible
without generating a tense atmosphere.
So one could easily change things which worked out fine in
the beginning because there were only about 30 developers.
As the community grew it got more and more difficult so the
release management became a big problem. For example the
transition from Plone 1 to Plone 2 was very difficult because
the developers wanted to implement too many features. So
the product never got mature and release 2 was delayed. One
company from Austria then said that they needed Plone 2 be-
cause one of their projects required features of release 2. So
they began to develop their project on a beta version of Plone
2. But because there were so many changes all the time they
had to rewrite their software every week. Finally, Jodok Bat-
log wrote a long email where he complained that he got sick
of this because they had to start from scratch every single
week. He demanded a professional release management. This
email changed a lot. First I thought “Oops, now we’ve got
trouble brewing!” But since the people knew each other per-

sonally no bad mood developed.
So here we see the importance of personally knowing each
other. This I believe is the main success factor of Plone:
people drink beer together. In December 2002 I went to Rot-
terdam to a Zope Sprint. A sprint is a meeting for developers
where intense product development takes place. So in Rotter-
dam we were 40 developers - I’ll show you some pictures.
There I programmed together with Alan Runyan in a pair
programming team. Like this I got to know him and learned a
lot from him. I then asked him if we shouldn’t organize a
Plone Sprint, I would organize one in February 2003. So he
promised to participate and since Limi attended this Sprint,
too, I got him on the participants’ list as well. I announced
the Sprint and hardly a few days later all the 30 places were
occupied. So in February 2003 we organized the first Plone
Sprint of the world here in Bern. I knew Plone needed
something like this; people had to get to know each other to
improve working together via the Internet. So we really went
drinking some beers. This was the beginning of a whole lot
of developer meetings.
In May 2003 the next Sprint took place in Padova, Italy, and
later in September 2003 the next one in a castle in Austria.
So you deliberately went to special places?
Yes, exactly. Here in Bern we were at the University which
wasn’t very special. It was a perfect place to do such a Sprint
because we could install WLAN and had black boards to
sketch ideas quickly. It was good but Switzerland is too ex-
pensive to organize international Sprints because of the side
costs. After all, people have to pay everything by themselves,
travel, accommodation and so on. In Italy we simply met in a
booth during an IT exhibition. Instead of exhibits we set up
some tables where we could work. It wasn’t really good be-
cause it was too noisy but the important thing was to meet
once again after only a few months.
In addition, others saw you at the exhibition.
Yes, of course. You talk about this and people are amazed
that developers from all over the world meet there to program
during three days. In the castle we worked in the living room
of the owner. The dimensions of the room were about
10x10x8 meters and dinner we had at a long table like 50
knights. Those were very special, unique moments when pro-
grammers from all over the world met for one topic only.
Some of them I‘d already seen for the third time that year so I
can say now that I know Plone people better than my neigh-
bours here in Switzerland. So the Plone community is not an
IRC or email community but a community of friends who see
each other regularly. This leads to unique stories every time
we meet, like if you go into a training camp with a sports
club. For example at the first sprint I organized a traditional
Swiss cheese fondue in the city. Limi ate way too much so he
won’t ever again eat fondue. For two days he suffered from
stomach aches. To this day he always reminds me of this in-
cident and that it was a bad idea to go out for fondue. I even
acquired the nickname “Mr. Fondue.” This is the kind of
stories you tell over and over again.
This year in September we had the second Plone Conference
(not a Sprint!) in Vienna. The first one was last year in New
Orleans which I missed, unfortunately. In Vienna there were
300 people attending the conference, ten times more than at
the first Sprint. So I would say the community grew ten times
in but one and a half years. I don’t know if it’s an appropriate
parameter to measure community size but at least it can be
said it grew a lot. I even think it is one of the biggest open
source conferences in existence about only one project. There
were people from Japan, India and so on. So one guy from
Bangalore asked if we still needed any development re-
sources because he would suggest renting Plone program-
mers from Bangalore. So here we see what resulted from a
meeting of two guys over IRC starting a new software and
only two years later there are developers from Bangalore of-
fering Plone services. I’d really say it’s a big project now.
I saw the potential of Plone and realized there is no other
platform offering such a quick web application development.
This is the unique advantage of Plone: high velocity of devel-
opment. No more than a few lines of code are needed to solve

Appendix Page 116

a problem. We seldom write a module where we need more
than 100 lines of code. Everything is connected with the
framework so in the end you don’t need to program that
much.
E.g., for the website of Bern, did you write your own CMS
or could you use Plone directly?
We used Plone as a basis and added own modules to it. Like
customized entity types and so on. The interesting part of this
project is that the city of Bern now started to develop in
Plone on their own. We trained three programmers in Plone
and now we work together with the city on the project “inter-
net presence of Bern”.
Is there also a relationship between the large Plone com-
munity and the decision of the city of Bern for Plone?
Of course they made the decision because of us. But the in-
tention of 4teamwork always was to spread the word about
Plone throughout the nation so we did lots of marketing. We
founded SwissZope, an association of companies working
with Zope. Unfortunately it didn’t come out so well so it’s a
bad example of an open source community. In Switzerland
there are now two Zope communities, but the country is actu-
ally too small for two communities. In the beginning there
were people from Zürich who founded zope.ch. I wanted to
help there but also intended to introduce business aspects
like company presentations, a Plone service supplier direct-
ory and so on. But the people who founded zope.ch wanted
to build a non-commercial community. We tried to negotiate
but failed so we founded swisszope.ch. We also went to the
Internet Expo with this label which resulted in new projects.
People read some showcases on swisszope.ch and followed
the link to our company. So it’s not really a community now,
only three companies are still on the portal.
Do you cooperate with other companies?
No, we don’t fit together. It is difficult to cooperate with a
company in Bern because we cover the same area of custom-
ers. Maybe it’s me who is too much business oriented. We
work together much better with a company from Nürnberg,
Germany. There’s no competition concerning customers
there. Here in Bern it’s delicate if you give your know-how to
your competitors. In Switzerland the Plone community isn’t
good. There are Plone companies but without much contact.
It might be a goal for next year to try to put some drive into
the Swiss community. I believe Plone has advanced so far
now that the demand for Plone projects has stabilized. In the
beginning it was difficult to get new customers for Plone so
we were happy when we were the only ones offering Plone
services. But now we believe there should be as many com-
panies as possible offering Plone. It’s somewhat a chicken-
egg problem. On the one hand you think “hey Plone is great,
I’d better tell nobody about it so nobody besides us will offer
services for it”. But if you think like that only you’ll end up
staying the only company in Switzerland offering Plone.
This, however, is bad for business. So it was always our goal
to convince as many people as possible of the advantages of
Plone because my intention is that Plone should become the
standard CMS in the open source field. Our company does
100% Plone right now and doesn’t touch anything else. It’s
quite a risk but on the other hand if you focus all your power
chances are many customers decide for Plone. Once they
choose Plone and it meets their expectations they won’t
switch again. Now in 2004 we are in a phase where many
companies already have an internet presence but maybe not
an intranet system or maybe they want to renew their web-
site. So this is a chance for us to step in with Plone. There-
fore our goal is to spread the word about Plone.
On one hand we would like that other companies offer Plone
services but on the other hand there remains the question if
we can exist like that. Somehow it’s a strange situation. At
least we’re in a way better position than vendors of commer-
cial CMS. For example Obtree got sold twice already, and
they have 20 developers. They developed a good product but
now Plone is better than Obtree. We’ve already had a couple
of Obtree customers who’ve switched to Plone. They say
Plone is much better and easier to handle. Right now there
are about 150 developers worldwide advancing Plone 7 days

per week, 24 hours per day. This is a development power
only big software companies like Microsoft, Novell or SAP
can afford. For the middle range CMS provider it gets harder
and harder to survive. Plone is advancing fast and at high
quality so more and more people will choose it as their stand-
ard application. It’s the same as with web servers: I suppose
today you’d choose Apache. Of course there are other web
servers, but Apache is standard, runs well so it’s everyone’s
choice. Our goal is to have Zope and Plone become standards
in the application server field of open source solutions.
Zope and Plone are written in Python. What are the differ-
ences between this programming language and, say, PHP or
Java?
Python is a cool programming language and we have many
developers in Plone who’ve come from the Java world. The
disadvantage of Python is that it’s not well known. At the
moment Java and .net are number one, then comes PHP and
finally comes Python, I think. But Python has some import-
ant advantages: It’s a scripting language, so it’s not necessary
to bother about compilation. Also if there are 10 developers
in Java writing an algorithm there will be 10 different solu-
tions. If there are 10 Python developers their solutions will be
very similar. You can read Python very easily and you’ll
quickly understand how a Python application works. The guy
who developed Python tried to pick all the advantages of dif-
ferent languages like C++, Perl, Java and so on and combine
them into Python. This is one of the reasons why Plone ad-
vances so fast: it’s so easy to understand someone elses Py-
thon code! I believe problems can be solved with much less
code lines in Python than in other programming languages.
This is an interesting point.
How about documentation on the levels of Python, Zope and
Plone?
Python is very well documented. There are several good
books about it and it’s not so difficult to learn. For Zope
there are also a couple of books. Plone is the least docu-
mented of these three. There are large efforts to document
Plone well, too. But it’s a main problem and even a miracle
that Plone has advanced that far without being well docu-
mented. Obviously Plone must be so good that people are
willing to suffer learning it without good documentation.
Sometimes I almost lost my nerve with it but when, on the
other hand, I saw how bad other systems are I came back to
Plone quickly, accepting the momentary lack of documenta-
tion.
Is this lack of documentation possibly a consequence of the
sprints where people communicate orally?
Yes, during a Sprint you learn much more than by reading
mailing lists. You can listen to talks and gain much more
than through reading mailing lists. You can also program to-
gether with developers who really know it. In this way you
learn much faster. It’s the pair-programming idea, writing
code in pairs.
What kind of mailing lists do you use?
In the beginning there was only one mailing list. It’s an ad-
vantage to use only one mailing list instead of ten different
ones about different topics with nobody posting anything on
them. The one list in the beginning got more and more traffic
and so it could be split into a developer and in a user mailing
list. Later on others were added, one for each specific
product. But only step-by-step: when a topic appeared again
and again a new list was opened.
What is the average traffic at the moment?
Well it’s so large that I can’t read everything any more.
So there are more than 10 emails a day?
Yes, in the beginning you could keep up reading them but
then the traffic exploded and you didn’t have a chance to
catch up reading them. You would need two hours a day just
to read all the emails, and in addition you’d have to be in the
IRC chat. There are people who do that, they live for Plone.
It’s become so broad. If you want to work with Plone in a
company you must do that 100% otherwise you don’t have a
chance. Plone has become very large and complex so you

Appendix Page 117

have to invest a lot of time. On the other hand you can devel-
op extremely well-working solutions.
What would I as a novice have to do today to get into it?
First of all, download Plone, install it and start working with
it! Of course, you should read books. In the past two months
two Plone books got published explaining it very well. If we
had had them in the beginning life would have been much
easier for us. But mainly you’d just have to work with it and
try to understand how it works!
Are there also tutorials on the internet?
Yes, meanwhile there are lots of different sources of docu-
mentation. We collect them on our website providing links to
them.
What kind of documentation do you have?
Most important is the Plone manual describing, e.g. how to
create new content types and so on. One important element
are the archetypes. Archetypes are another framework based
on the CMF. It’s optimized for Plone. With archetypes one
can create very complex content types.
Are archetypes an independent open source project?
Yes. Plone wouldn’t have a chance without archetypes. They
have become such an important additional product that you
can’t imagine being without them. With archetypes you can
now draw an UML diagram using the UML editor and then
create a Plone application with another script. This is a very
radical thing.
Who would use this functionality?
We don’t use it yet because we’re not yet convinced of it. It’s
good if you need to create a prototype rapidly, but to trans-
form it into an application you still need to code. Still, during
one afternoon you can design a complex web application in
the UML editor and then create a working Plone application
out of that.
Is there a development environment for Plone like roundtrip
software for UML design and update?
There is no such thing yet, but still you can add new func-
tionality to the code by doing changes in the UML diagram
and then you can generate the code again. The added method
should be included then.
Nevertheless we got away from this because archetypes are
already a very comfortable development environment. So we
keep developing in Python.
What’s the development environment at the moment?
You’ve got subversion for version control and a text editor,
that’s all at the moment.
What about auto completion and debugging?
We rarely use these. There are very good development envir-
onments like Boa Constructor. It’s a development environ-
ment based completely on Python. I only saw it in a demo
but didn’t test it yet. It’s a good environment but right now I
work more efficiently with a regular text editor and a local
Plone installation for testing. In addition, Zope itself has a
debugger installed so if there is an error in Zope you see the
stack and a line number where the error occured. This way
you save lots of time simply because of the error messages.
Don’t you also want to check the state of the objects?
There is a debugger in Plone. You can start Zope in debug
mode and set break points to step through the application.
But we need this very rarely. It’s usually not necessary be-
cause of particular mechanisms that prevent writing wrong
code. For example in Python everything must be indented
correctly and in Plone itself you’ve got a page template lan-
guage that is validated against some XML scheme. So if
there is an error you can’t even save it. Consequently,
everything that is saved is at least syntactically correct as
XHTML. So lots of common errors are avoided. That’s one
of the reasons why development is so fast. Once it runs only
logical errors remain.
How much of the current code of Plone has been written by
the intiators?
I’d say about 80% of the code has been developed by the

core team consisting of about 30 to 40 persons. They are dis-
tributed all over the world like Brasil, USA, New York and
Europe like Germany, Norway, Switzerland and so on.
What are the reasons it got distributed so quickly? What
were the actions of the project coordinators?
From the beginning we had a Plone website on plone.org that
was very open. For example you could log in and write some
docu. There were no restrictions for persons who wanted to
contribute.
How about quality assurance?
This was done by the core team. But they had the general
opinion that everyone should be able to contribute and that
they would check later if it’s good or not. This was a factor.
In addition the combination of people was favourable. They
were not freaks but people of at least 30 years, i.e. not so very
young.
Does the degree of experience have any importance?
Yes I believe so. Plone isn’t a toy. Nothing against PHP but
this language can be learned quickly by computer newcomers
and they can create applications with it. But Plone is object
oriented which PHP isn’t really I believe, I don’t know it very
well. Anyway, Zope is an application server comparable to
Lotus Notes or BEA Weblogic, it’s a sophisticated frame-
work. Plone was designed to develop company-wide portals
and large internet websites. These jobs require a well foun-
ded education in computer science to be able to use Plone for
developing applications. You need to know what happens be-
hind the scenes.
What would you say is the average education of the Plone
users?
The members of the core team are all very skilled software
developers. Part of them has come from the Java world with
about 10 years of experience in software engineering. This is
obvious. The people working on Plone really knew what they
were doing and how it should work. They are software archi-
tects who don’t just start coding but first think about how to
design the system to make it extendible in the future.
What do you think is the influence of this fact on community
building?
The Plone community is special. Many members have famil-
ies and many have their own company offering Plone ser-
vices. So in the beginning there was nobody who did it as a
hobby or during his studies. They all used Plone and Plone
services for a living.
Do you think this helped to put additional drive into the
whole thing?
Yes! If I own a company offering Plone I do have a strong in-
terest that it gets developed further. But one who does this as
a hobby or a student who just likes it, doesn’t care about it
any more once he finishes his studies and starts to work. He
might even forget it and stop developing. People like this get
lost, people who do open source development for fun. It does
happen, of course, in many open source projects people write
an application just for fun. But Plone really has a business
orientation. We want to develop a system that is so good it
can top commercial products.
What means of communication do you use and why?
Most important is the IRC channel. This was one of the most
important elements in the beginning so people could talk to
each other directly. The other one is the mailing list, it’s still
a central instrument although I’m not a big fan of it. In our
customer projects mailing lists and forums don’t work. Regu-
lar people who work in projects are not used to work with
discussion forums. But in the Plone project the mailing list is
important. Until today it’s still the main communication
channel. Then there’s the chat. It’s more like a meeting point
where you get inside informations and where rumors are pro-
duced.
How many IRC channels do you use?
There are many channels but only one Plone chat you should
use. There are companies who log the chat and read it after-
wards because there you learn the most. Although informa-

Appendix Page 118

tion can get lost the advantage of IRC is it’s direct and fast
and you can talk to each other as in a restaurant. On
plone.org you can find a couple of IRC protocols of interest-
ing chat sessions, just copy-pasted to the website. This way
newcomers can visit the website and get a good introduction.
Yesterday, e.g., Alan Runyan, one of the Plone initiators, was
in the chat. One guy asked a very basic question and Alain
took his time to answer the question. This really helps com-
munity building if you patiently answer the stupid beginner
questions, too, even if you are the main developer. This was
very important in the beginning of the project when there
was not yet much documentation but people received help in
the chat.
How is the presence of the core developers in the chat?
It was high in the beginning and it’s still very high. Some-
times I get the feeling the core developers are in the chat al-
most 24h a day! I myself don’t have enough time to particip-
ate much because we have Plone projects to do. We have to
generate income for the company so we have to put priority
on customer projects.
How about leadership in the OSP? For example the
“friendly dictatorship” model?
So far there is not one single leader of the project. Take Alex-
ander Limi, one of the founders. He would like to be the
leader but can’t because his character doesn’t fit the com-
munity. He’d like to be the guru but that’s not possible be-
cause of his way to solve problems. He sometimes acts like a
dictator but it doesn’t work. Alan Runyan, on the other side
doesn’t care about leadership at all. But actually he is the real
leader because of his way to help everybody and listen to
everyone. Whenever we meet he asks what can be done to
improve Plone and I tell him all my problems. He accepts cri-
ticism and tries to improve the software so he has the highest
degree of reputation in the Plone project just because of his
way to be, to support and accepting criticism. That’s how he
reached this position.
What about his knowledge?
He does know a lot but today you can’t know everything
about Plone. There are so many additional products. Still
he’s the one with the greatest experience. Then there are
many others who know a lot about one specific area like user
management or content types. I’m more of a generalist so I
build applications from finished components and so I know
what components to take.
Are there different roles in the Plone community?
Yes, we designated heads of specific areas like documenta-
tion, release management, code review, subversion manage-
ment. Yet it’s a democratic process. The release manager
would never say “Hey guys, next week the release comes
out!” There are discussions on the mailing lists until a con-
sensus is reached. So the one who writes the best mail has
the greatest influence. Take this Jodok Batlog who wrote the
mail about Plone release 2. He wrote quite aggressively but
without any spelling errors and well formulated, so you real-
ized here is someone who did think a lot about what he
wrote.
What was the consequence of this email?
The consequence was a long discussion about release man-
agement followed by decisions. Within a month the release
came out.
What are the important aspects of release management?
Mainly feature freeze. It’s one of the most important rules to
integrate new features only if they work completely so the ar-
chitecture doesn’t change all the time. In a Subversion you
create branches, merge them again and tag them for a release,
as in CVS.
Who is in charge of the release management?
Actually it’s Andy McKay but meanwhile he’s got a family
so he doesn’t have much time right now, so someone else
does it at the moment. By the way Andy wrote the first book
about Plone.
Is he also a developer?

Yes he is. We’ve introduced the Plone Enhancement Process.
So if you want a new feature in Plone you first have to write
a so-called PLEP where you describe what the feature has to
do and how it can be realized. Today you’re no longer al-
lowed to implement new features in Plone directly. After you
hand in the PLEP the release management team evaluates it
and then we decide in which release this PLEP is to be im-
plemented.
How was this structured process introduced?
Probably because we had such a big chaos. Everyone imple-
mented new features and no one had an overview any more.
The features also had side effects which led to dysfunctional-
ity of the system. That was the time when companies had
problems with projects when Plone didn’t work any more be-
cause of these side effects. So it was decided that no one is
allowed to add a new feature without first writing a PLEP, a
description of the feature. In this way you could see what
side effects could possibly occur and if necessary improve-
ments could be made in the design phase already.
What about API changes? Was Plone 2 completely back-
wards compatible?
No, it got a break. The transition from Plone 1 to Plone 2 was
a hard task. There were migration scripts that migrated most
of the code. So projects using Plone 1 could migrate to Plone
2 without a change. It’s a very big help to be able to migrate
old applications to newer versions of the platform. For every
release a migration script is written which let’s you migrate
your application to the next higher version of Plone. For ex-
ample a script migrated applications from 1.0.4 to 1.0.5 and
so on. There is a function that compares the version of your
Plone site to the version of the current Plone installation.
Then all the migration scripts are applied incrementally. It’s
an important point not to let the community down with up-
date changes in their applications. Of course some work had
to be done to update. But if somebody just takes the standard
Plone installation he can migrate quite easily to newer Plone
versions. If you do too much changes in Plone you’ve got
problems. In the beginning we did this but now we try to use
as much of standard Plone as possible. This is what’s run-
ning and it has been installed a thousand times.
What about the name and other marketing aspects?
Right now there are important activities going on with the
initiation of the Plone Foundation. It’s like the Apache Soft-
ware Foundation, an association that protects Plone and of-
fers administrative help. Computer Associates have
sponsored Plone and donated USD 100’000 to the Plone pro-
ject enabling the hiring of somebody to lead the project. He
has to see that everything works fine in the Plone project. He
mainly coordinates the mailing list, motivates people to do
certain tasks and so on.
Another aspect is that Plone gets registered now as an inter-
national trade mark so nobody can missuse Plone for his own
purposes.
The third action is to establish a well based licensing model.
It’s a hot topic right now. They try to assign all the copy-
rights of Plone to the Plone Foundation. At the moment
Plone is published under the GNU GPL. The Foundation is
supposed to decide under what license Plone is to be pub-
lished so they want to clarify the current state of right. The
idea is to relieve the individual developer from responsibilit-
ies. So if a patent claim is opened, e.g. Microsoft says Plone
infringed upon our patent XY, then the foundation behind
Plone shall make it less likely that a company sues Plone. Be-
fore this change, e.g. Alan Runyan or Alexander Limi could
have been sued because they might have broken a registered
patent. But because they gave their rights to the Plone
Foundation a company has to sue the foundation. They,
however, can take an attorney much easier now and this
might scare off potential adversaries. This instrument of
power is supposed to provide security in the background for
us as a company, too.
The foundation is also developing a marketing concept. Port-
er Novelli, a world wide marketing company, donates mar-
keting services of a value of USD 20’000 a month by letting
one of their marketing specialists work for the Plone project.

Appendix Page 119

Additionally in Las Vegas there was the Computer Associ-
ates Conference in September of this year [2004] where the
Plone project was presented. Alan Runyan was on stage talk-
ing in front of 3000 journalists in the room. This also pro-
moted the project.
All these are reasons helping us to sell Plone as a solution.
For example the city of Bern looked at the community be-
hind the project, too. It helps if an open source project e.g. is
downloaded over a million times. These are facts that can’t
be discussed away.
Are there roadmaps, goals for Plone? What could the pro-
ject look like in 5 years?
There is a roadmap but to be honest I don’t know it. You can
look on the website. We trust the guys so we don’t care much
about it. Our influence is more indirectly by convincing the
core developers of a new concept. For example telling Alan
Runyan that we need an interface to Exchange. In this way
we try to push people into a certain direction.
What’s the importance of Plone interfaces to other applica-
tions?
Recently a Plone desktop has been published, a connection
of Plone to Windows. It’s a commercial product, one of the
first that you have to pay for. Using this you can manage
your Plone directories in your Windows Explorer like regular
Windows directories. It’s like working on a file server. In this
way you can use Plone as a document management system,
too, not only as a content management system.
In five years maybe Microsoft will have a product that in-
cludes all this functionality in its Windows system so Plone
won’t be needed any more! No, I think the next big step will
be Zope 3. The first release just got published. Maybe Plone
will be migrated to this new application server by the end of
the year. The aim is more flexibility and still faster develop-
ment of applications.
Where do you see the difference between the initialisation of
Plone by these two individual programmers compared to
having had a company behind the project?
For example Nuxeo published CPS as an open source project
but not many people were attracted. In Plone there were only
these two guys. They worked in a company but you had the
feeling that they were working independently. I believe it’s
an important aspect that there is not one company behind the
project but one or more individuals.

What do you think, when is the right moment to publish an
open source project?
On one hand you should publish a software only when it’s
quality is sufficient. On the other hand it might also make
sense to publish it early to let people give you feedback. It’s
difficult to say when is the right moment - it might be always
and never. You need a lot of luck and the right momentum.
It’s as in soccer when Greece won the European Cup 2004:
nobody would have guessed it. This can also happen in the
open source area when the right momentum is present and
the right people join the project and talk about it.
Do you think the name “Plone” has an influence, too?
No. I think it’s not a good name. But it doesn’t matter be-
cause a name only becomes good if the product behind it is
well. I believe it doesn’t have much influence. Therefore
Plone never changed its name. There were intentions to re-
name Zope because it always appears in the end in an alpha-
betically ordered list and often gets confused with SOAP. But
still the name is secondary. The important thing is that the
name is internationally compatible.
Another aspect: I believe Switzerland is too small to start an
open source project focussed on the Swiss market, only.
There are too few people, developers and users. Switzerland
is too small a country so you need to start your project inter-
nationally from scrap.
Last question: Are there only community members who pro-
gram or are there also non-developers in the community?
For example at the sprint in Bern there were also non-de-
velopers. They didn’t know how to program but wrote some
documentation or did tests. These are also important team
members. Or at the sprint in Austria there was this blind wo-
man who just wanted to check how Plone could be controlled
by blind people. She also did a presentation about how she
used Plone. The computer told her where in the system she
was but because it wasn’t implemented well she lost track
and complained about it. Right away developers corrected
the software and now Plone is out-of-the-box controllable by
blind people. This is what other companies offer for a couple
hundred thousand Swiss francs, and Plone has it simply im-
plemented. Such features make the difference. They aren’t
visible at first glance.

Interview with Boris Kraft, Magnolia on November 19, 2004

Please present yourself, your education and so on.
I studied computer science in Kaiserslauten, Saarbrücken and
then Edinburgh in Scotland. Mostly I worked with simulation
issues. I finished my studies in 1996. I started working in the
internet security area and lateron I got self-employed in the
field of web applications, databases like Oracle and so on.
Four years ago Pascal and I merged our companies. One and
a half year ago we started with our own content management
system. Originally we used a commercial software from Ice-
land, based on WebObjects because we did a lot of applica-
tion development in WebObjects at that time. But it got more
and more difficult to sell projects with licensing costs and we
also noticed the project costs were usually higher than the li-
censing costs. So we asked ourselves why keep on working
with licensing costs if they are a real problem? We tried to
fiend some leasing solution with our partner in Iceland. But
since the software was still proprietary and we didn’t have
access to the source code the customizing expenditure was
higher than actually necessary since we didn’t understand
things that were not completely documented. Or to say it in
the reverse: If a customer wants some customizing you don’t
need to program it as an extension but can do it directly in
the system.
So we looked what kind of open source CMS were out there
and couldn’t find one that fitted our requirements: it must be
Java-based. There were only Lenya and OpenCMS. It must

be standard based and good in usability because our custom-
ers really demand that. They don’t care about XML, Cocoon
and so on, for them the CMS simply has to be easy to use.
For us developers it must be efficient in implementation so if
we got a design we had to be able to realize it quickly.
Under these conditions we looked at the open source CMS
market again and suddenly realized there was no such CMS
out there. My statement at that time was still “We won’t
write our own CMS, it wouldn’t make sense to write the
1001st CMS.” On the other hand I knew that we had very
good people at that time so I let Samir, the core developer of
Magnolia CMS, start programming. Obinary initiated the
whole project and is also financing it still.
Why did you publish your new CMS under an open source
license and not under a proprietary one?
During development we thought about making it proprietary
but we also knew that in today’s market if we published yet
another proprietary CMS we wouldn’t succeed. Today you
need a huge amount of marketing and sales effort to promote
your CMS. Just considering this perspective we couldn’t af-
ford these expenses. So one reason to choose an open source
license was to get cheap marketing and a large amount of
feedback.
On the other hand marketing alone doesn’t help getting the
investment back. So the reason for the first Magnolia release

Appendix Page 120

was primarily for our company to be able to avoid licensing
fees and implement customizings faster. Release two which
got published this week was more for the community.
What use do you hope the community has for you?
The primary idea is to spread the word about Magnolia and
its connection to obinary and simultaneously to show that we
are able to handle such technologies. So we hope that people
respond and say “Hey it’s a great tool you’ve created! Can
you do our implementation and help us in some parts?” This
actually occurred a couple of times and we hope it will con-
tinue to grow in the future. Of course, how much really ends
up as a paid project we’ll see, but before we were just a small
software company and now we’re an internationally known
software provider. This also helps in current customer
presentations where we can show what we can do and the
customers don’t just have to take our word but can see what
we’ve actually achieved.
Another goal of course is that we don’t have to keep on de-
veloping the CMS by ourselves alone so we hope this will
change in the future, too. Also we hope Magnolia helps us
finding more skilled developers who are motivated by work-
ing on a well-known open source project. Such persons don’t
have to work on a project which nobody will see but can par-
ticipate in a cool open source project and can also make a
name for themselves in the open source community.
Did you get any feedback by the users?
Yes, lots of it via the mailing list. Mainly it’s positive, espe-
cially concerning the GUI. But most of the people don’t
really react. Of the 40’000 downloads we had of Magnolia so
far less than 1% have registered on the news list, only about
360 persons. On the developers’ mailing list there are about
250 registered users while the number of Magnolia installa-
tions is about 4000 to 6000. We have sort of a ping mechan-
ism - which can be turned off - that shows how many unique
IPs are using Magnolia. In addition on our website you can
see how many websites were realized with Magnolia but not
by obinary, and you’ll find no more than about 10 installa-
tions. So it’s a very small number of installations that we get
informed about.
What about the traffic on the mailing list?
It’s varying a lot. There may be no emails for three days and
then again 20 or 30 on one day, depending on the topics that
are discussed. Installation issues are very small compared to
what I read on other CMS mailing lists. We’ve got a demo
installation which you can install with a double click and
then show how it’s all done.
What did you do to promote community building besides
this?
I believe a community builds around a project when it’s in-
teresting enough and many people are going to use it. Aston-
ishingly there are many people who started working with
Magnolia release one and were immediately amazed by the
beauty of the code. But most of them never said a word about
it! Only when they finally posted a question on the mailing
list could you tell that they knew exactly what they were talk-
ing about. For example Siemens Enterprise finished their
website completely on their own and only got in contact with
us because they had some problems in the end.
Once it got a Wiki about Magnolia people started to post a
lot of information there. It’s an important point concerning
community building to lower the entrance barrier for the
people.
What are the entry barriers in your project?
Everything can be a barrier. Just subscribing to the right
mailing list might be one. It’s not that easy in our project be-
cause I want people to first read through the Wiki and the
mailing list archives before posting something on the mailing
list.
What kind of communication infrastructure do you use?
Mainly we use the Wiki and the developers’ mailing list for
the people who want to get on Magnolia. The user list is used
by the people who install Magnolia and have questions about
this. Sometimes it’s difficult for them to decide on which

mailing list they want to post something.
How many questions did you answer?
I wrote about 400 emails. A quarter of the entire traffic we
had from November 15, 2003 to November 15, 2004, during
the first release.
Did you have any specific reasons to do the release on that
day?
Besides the fact that November 15 is my brother’s birthday
we released in November because company budgets are fixed
around that time for the next year.
Concerning the mailing list, how can you manage that you
don’t have to answer all the questions by yourself?
You need a certain momentum which you only achieve if
you’re active in the beginning. As soon as you get a certain
number of people involved they will also start answering
emails. The small percentage in the beginning shocked me a
lot; to see how few people actually helped although they had
received an enterprise CMS for free! So I realized that in the
end everybody still looks for himself. Now we’ve introduced
a partnership program which gives you a gold partnership for
USD 1000 and a platinum for USD 4000 a year.
The general problem is that people who know how to help
don’t have the time to stay on the mailing list all day and an-
swer emails. The discussions need to be interesting enough
for them to invest their time.
How do you motivate people to participate in the mailing
list?
The most important thing is to show that something is going
on. So if somebody asks a question and he doesn’t get an an-
swer during a couple of hours he’ll be disappointed. Like this
good people come back because it’s also fun to communicate
like that.
How can the community participate in Magnolia develop-
ment, e.g. is there any task list for the community?
We want to open development with release 2 of Magnolia so
we will install Subversion and continue to use Jira for bug
tracking. So we hope the community can help in testing new
releases and write bugs directly into the tracking system.
Additionally we are planning to post projects that describe
possible extensions of Magnolia. In release 2 we offer these
GUI controls that allow third party developers to write exten-
sions in the same look and feel of the application. Later on
we want to write sort of an Extension Manager that lets you
install the Magnolia extensions with one click just by access-
ing some sort of an extension repository. Also we want to of-
fer the possibility to write commercial extensions so you
have to pay for certain ones, like in Eclipse.
How did people react to the fact that Magnolia was initiated
by a company?
It’s difficult to say. There were some that were happy they
could just call us. There are also the hard core Apache guys
that don’t like the GPL/LGPL under which Magnolia is pub-
lished.
What about your strategy of giving only few people commit
access to the CVS?
We must make sure that external committers really know
what they are doing and don’t give us more work than they
help us. Until they can commit on their own they have to
send us patches after signing some committer’s license agree-
ment. This is important for us since we want to keep the pos-
sibility to change the license. In general we had a lot of li-
censing questions lately, it’s a very complex topic and unfor-
tunately there are only few people who really know about it
thoroughly. Simply said we are sort of afraid that if we took
an Apache license someone could just take our project away.
What’s the influence of the type of open source license on
community building?
It’s difficult to say. I think most people don’t care what li-
cense they use. At least it can’t be that only the Apache li-
cense is good since most projects are published under the
GPL license and still have great communities.
How much influence has the release management?

Appendix Page 121

It’s something you don’t want to leave to the developers be-
cause otherwise the project never finishes. The release man-
ager must be somewhat strict and decide when we’re doing a
new release. It’s not typical for an open source project.
Maybe this could change once we get more contributions
from outside. But it’s lots of work to do a new release. Just
doing some bug fixes we can solve with patches, but e.g. in-
cluding new features needs some documentation of these and
description of their influence and so on. This is definitively
something that the community can do in the future, too,
building the installers and so on. The question is who wants
to do that? Open source projects usually have bad document-
ation because developers don’t like to write documentation
but want to write cool code.
Would documentation be something that non-developers
could do?
Yes, definitively. I didn’t write any code of Magnolia but
wrote the Template Quick Starter that describes how to write
templates for Magnolia. It’s not difficult at all, just making
screen shots and describing how to create new users and so
on. But it’s still work and somebody has to do it.
What kind of documentation do you have?
Lots of marketing stuff like a features list and even a video
walk through the process of how to create a new page. [...]
You use Sourceforge as download site. What do you think
about such open source platforms in general?
For us branding and control of the infrastructure is important
so if you use Sourceforge you’ll always do some Sourceforge
marketing. If you build up your own infrastructure you’ll
have much more freedom using your own preferred tools,
like bug tracking and Wiki. Today we use Sourceforge as
download site just to save bandwidth. One big advantage is
that if you do a lot via Sourceforge you can rise quickly in
the rating. For example the project Open Workflow where
I’m still somewhat involved, gets into the top ten from time
to time. John who initiated the project is currently the only
active community member but he does a release and
prerelease every week, writes news and so on. We didn’t put
our mailing list on Sourceforge because we don’t want to be
dependent and also we knew that e.g. the CVS had problems
again and again. As I said branding is also important so
people receive a nice looking website and not the one of
Sourceforge.
What influence has the name of the project, in your
opinion?
Magnolia is a name that can be pronounced in all countries,
it’s sufficiently unique for such a product but still known as a
name by itself. It’s a simple and easy to remember name.
Is there a possibility to rename the project?
Yes of course, Lenya did this when they were donated to the
Apache Foundation.
What’s the influence of such an open source association?
It’s difficult to say. Apache does a lot of software but not all
are well known projects.

What’s the influence of standards?
Very early we started with this JSR-170 standard that defines
how CMS have to access data in the content repository. At
that time we didn’t know if it would be published and if it
would ever get any importance. Indeed there were people
who found us because of our JSR-170 compliance so, appar-
ently, we are interesting for a certain group of people.
What are the unique features of Magnolia?
Certainly the GUI, then Java and also the JSR-170.
Is there a first mover advantage?
Well, we did all the effort, the GUI, the JSR-170 stuff and
marketing because there wasn’t anything like that at the time.
Now it makes no more sense to do it all over again but to join
the community and help to advance Magnolia.
What can’t be changed any more now that the project is
published?
It’s difficult to say. I wouldn’t want to change its name be-
cause it’s an asset of us. Neither could you change the tech-
nology like JSR-170. It’s possible to extend Magnolia for a
special interest group like “Magnolia for Group Collabora-
tion”, and also as a commercial solution. But there is still a
large potential inside the CMS area. We would like to ad-
vance it especially in the enterprise CMS area because
Magnolia already has some important features like clustering
and separation of authoring and live environment. [...]
With the module mechanism you can extend Magnolia so it’s
possible to build up a large community in the extension area.
That makes more sense than having people in the core since
it’s quite finished and you would have to know all about it.
It’s the same as in other CMS like Communicate of Day or in
TYPO3.
What could you improve today to let the community grow?
Our strategy is to do marketing and spread the word about
Magnolia. For example last Wednesday we were on Heise
and this had a lot of impact. Also newsletters are important
like the one for Apple Developers where we can announce a
new release, and websites like Serversite and JavaLobby.org.
Developers’ magazines would be very cool but it’s quite hard
to get to the right people. Also keyplayers are important like
for us Tomato, a known design company of whom we could
write a cite.
Concerning further community building I’ve talked to Daniel
Hinderink, the guy who helped building the TYPO3 com-
munity. As compared to the TYPO3 organisation, he sees the
possibilities of the central control of our company we have.
[...]
We recently founded the Magnolia Organisation of which
obinary shall be only one member among many others. Obin-
ary will always be the initiator of the project but other com-
panies shall have the same rights, too.
What architectural aspects of the project could help promot-
ing community building?
Certainly the module idea. When this was introduced into the
TYPO3 project the community actually exploded.

Interview with Bertrand Delacrétaz, Cocoon on November 24, 2004

What is you education and when did you hear about Cocoon
for the first time?
I’m a HTL engineer in electronics because I didn’t want to do
computer science only. After graduating I completed addi-
tional studies in computer science. Since 1989 I’m self-em-
ployed working as programmer, consultant and teacher in the
area of open source web technologies like Java, Cocoon and
so on.
Cocoon started to catch my interest because of its XML pub-
lication properties. I had done some projects where we pub-
lished data in the web with Java and XML in 1997 in the
early days of Java. I got into contact with Cocoon quite nat-
urally because it did just exactly this. So I followed Cocoon

until it was mature for productive use and worked with it in
different projects.
What’s the history of Cocoon?
Cocoon was initiated by Stefano Mazzocchi when he was
still at university. He was already active for the Apache
Foundation working on a module called JServ. He had to do
the documentation of the website so he looked for a tool but
didn’t find anything. So he decided to develop Cocoon,
about in 1998. In the beginning he worked a lot on his own
or with only two or three collaborators. I believe in 1999,
when more and more people joined, they wanted to rewrite
Cocoon and implement better mechanisms like a sitemap and
other concepts. So Stefano is the inventor of Cocoon and

Appendix Page 122

later on more people joined development.
What was the idea in the beginning?
The vision was an XML-based publishing system that could
publish content in different ways and forms.
Was there any comparable technology at that time?
Probably. But when we got a large job for the Swiss parlia-
mentary services in 1997 we had to build our own system
since Cocoon didn’t exist yet and there wasn’t anything else
available that we could use. There were already solutions
around for that kind of job but they were not sufficiently
open or mature enough. So the concept of Cocoon was in-
deed innovative at the time.
What were the unique features of Cocoon?
The XML pipelines. You start with XML data and can add as
many transformers as you want to build a pipeline. Every
step can include its own XML parts and in the end you have
a complete document.
Was it like that from the beginning?
Cocoon 1 was already like that but the pipeline information
was contained in the document itself. This wasn’t good be-
cause frequently you have documents from another source or
you can’t change the documents. The big innovation of Co-
coon 2 was the sitemap. It tells which pipeline to use for a
specific request of the client and this is quite flexible.
Is there a certain vision of the main purpose of this frame-
work?
I’d say the vision develops with time. We’re lots of people
now in Cocoon, about 40 committers and about 20 of them
are very active.
Are you also one of the active ones?
It depends. Over the year I’m very active during some
months and then again not so much.
Back to the vision: The point is Cocoon is very open and we
are just starting to call it a web application platform. This is
very open. The core of Cocoon itself is very small but it in-
cludes lots of tools and libraries. So for someone Cocoon
might only be a system to publish XML to HTML, another
one builds a large web application with databases, XML
feeds, including multi channel publishing to web, WAP,
PDF, images and so on. So the vision is very open and it took
quite a while to get one. I think we have it now. For three
years now we have the Get Togethers, annual community
meetings. Last year for example we decided to have one
single form library, the classes which process the forms. Be-
fore there were three libraries but we decided to really focus
to get a clear, common vision. We don’t want to exclude the
others but for the Cocoon project we have now Cocoon
Forms. There are still people who do large applications with
other libraries, it’s not prohibited, but for the team there is
now only one. The vision is to become an XML based applic-
ation platform. This is very broad so we are always discuss-
ing where we are going, what we are doing, what has high
priority, what is of low priority and so on. But at least we
have the clear aim to keep the core of Cocoon as small as
possible. Everything else is modular. This is like e.g. Linux
where the kernel itself is not so big but there are many utilit-
ies and classes. Cocoon goes in the same direction, just act-
ing as a kernel and then everyone can do with it what he
wants.
What are the benefits of this strategy concerning community
building?
I think the result will be a very open community. There are
very active people in the team who work with very different
technologies although they all work with Cocoon. We must
be able to communicate because we have to agree on certain
points. This is interesting because the people are very differ-
ent and they are not doing the same work. There is a broad
application spectrum of Cocoon so there is also a broad spec-
trum of community members.
Is there sufficient documentation?
No. Actually I got invited into the project because I started
working on the documentation. In addition to the official

documentation we use a Wiki system. In the beginning I did
a lot in the Wiki, helped to organize it and to set it up. Since
that time we talk a lot about documentation. Our documenta-
tion isn’t good compared to what you can do with Cocoon.
We are not proud about that, it’s a real problem. There are a
couple of books about Cocoon since two or three years but
there hasn’t been a new one since about two years. So be-
cause there were a lot of changes in Cocoon recently the
books aren’t up to date any more. Hopefully new books get
published soon. On the other hand writing a book is very
tough because it remains a niche market and you can’t hope
to sell 10’000 books about Cocoon today. Economically it’s
difficult so we are looking for cheap ways to publish books
or do professional documentation in some other form.
Today’s situation isn’t satisfactory. Just a couple of weeks
ago we discussed if every user could donate CHF 100 so we
could employ some people to do a professional documenta-
tion. This would be great but it isn’t easy to organize. There
must be fair play and so on.
What influence does this situation have on community build-
ing? Is it rather positive because people have to concentrate
more on the code or is it rather negative since people don’t
join the project because of poor documentation?
I’d say for Cocoon it’s not that negative. Of course it’s defin-
itely negative to have bad documentation - by the way it’s
not bad but badly organized at the moment. There is good in-
formation but it’s difficult to find.
What kind of information?
I mean e.g. references about components, how does a com-
ponent work and so on. In principle everything is available
but it’s difficult to find.
Is there an introduction into the code of Cocoon?
There is but it’s difficult because of the broad spectrum of
Cocoon. For example if one writes a tutorial it always goes in
a certain direction. So the next one says “Oh but I don’t use
Cocoon in this way, I can’t really use this tutorial.” We have
to find a solution and I also think there will be one. For ex-
ample a book about a certain case of usage describing exactly
how this works and so on - always in context with the refer-
ence documentation of the components.
Back to the other question. Bad documentation is not that
bad for Cocoon because we agreed Cocoon isn’t a toy for
“Joe User” but a tool for developers. Developers can be very
productive with Cocoon but there is a lot of experience ne-
cessary because of its combination of various tools. I’d say
roughly to be productive with Cocoon you need knowledge
in Java, in XML and XSLT, in JavaScript - many “glue
scripts” are written in JavaScript - and the build scripts to
start the whole thing. This is really the scope of an experi-
enced developer. So in that sense we thought it’s better to
have people fail early. People should realize soon if it’s a
useful tool for them or not. In the current situation without
much introductory documentation there are people who say
“Uff that’s really nothing for me.” Those that proceed really
understand the code and for them Cocoon definitely fits. I
wouldn’t say that’s ideal but it’s not that bad because Co-
coon isn’t a tool for people who for example did ColdFusion
only and don’t know anything else. Or a bit of PHP and
HTML but without real programming experience. Cocoon is-
n’t for those people. From this perspective it’s good that the
level is high. Nevertheless it would be better to have better
documentation - also being proud of the documentation isn’t
bad. But today that’s not the case.
How much of the code of Cocoon is still by Stefano Mazzoc-
chi?
Not much. Maybe the code of the Sitemap stems from one or
two persons but generally the code is from many different
people.
How does one get commit access?
The usual way is to get known on the mailing list, participate
and do something good for the project. It doesn’t necessarily
have to be code. There are a couple of committers who don’t
write code at all or at least not much. We take them along be-
cause we believe they still contribute to the project. They are

Appendix Page 123

e.g. “evangelists” or people who know how to write docu-
mentation and so on. It’s a minority but there are some. For
example I didn’t write much code of Cocoon. I wrote some
tutorials that contain some code, but nothing of the core. I
fixed some bugs in the kernel but only a few. So it’s import-
ant that one participates in the mailing list and then sends
Subversion code patches - some sort of correction or change
in the code - to the committers. And if one person sends a
sufficient number of patches the committers get tired of in-
tegrating all these patches and then say “It would be better if
this person could integrate the code directly.” Also with the
patches you can see the quality of the code, if the person
knows how to write good code, does it fit into the project.
Then the person is proposed to become a committer and then
an election takes place. There are certain rules in the Apache
Software Foundation. We always vote with +1 which means
“yes” or -1 which means “no” or +0 which means “maybe
yes but I’m not very positive.” And there are other rules that
say how many +1 one must have at a minimum and how
many -1 one can receive at a maximum. In the end we see if
the person gets elected as committer. In Cocoon we only
have few -1 because we often discuss these people in ad-
vance.
Is there an internal mailing list?
Yes, we’ve got an internal mailing list. It’s not really for the
committers but for the PMC, the Project Management Com-
mittee. This is another element of Apache because every
Apache project must have such an organisation. In Cocoon
any committer can be member of the PMC. This is not neces-
sary, every project can decide how they want to have it. So in
the PMC we discuss about the applicant “What do you think,
is this guy ready or do we have to wait a little longer to see
more?” We try to evaluate all the criteria because we want
the committers to stay in the project for a long time . This is
important for us because it’s some work to introduce some-
body to the project. Or of course it’s ok if they say “I can
only work during 6 months but intensively.”
How valuable are people who stay in the project for a long
time compared to those who just want to get an Apache
Committer title?
It did happen a couple of times concerning the documenta-
tion: Some people came and say “Hey your documentation is
nothing, I can do it way better.” So they develop large plans
how they want to do that but after a few weeks we don’t hear
anything any more. And that’s what we fear, people who
come with very great plans and then nothing happens in the
end - sometimes it does, but usually not. So we try to find
people who make their way into the community gradually,
learn how to deal with others, learn how to handle conflicts -
of human or technical nature. We call this “the Apache way.”
There are written rules and there are also some sort of polite-
ness and methods that aren’t written down. That’s how we
work.
What is the basic mentality?
Mainly it’s openness. Everything has to be done as open as
possible. Sometimes it’s not possible because if somebody
has a big contract with a company he can’t tell publicly for
whom he is working. Maybe he has sort of an NDA, a Non
Disclosure Agreement, which tells him not to betray the cus-
tomer’s name. For example he works for a big company and
they tell him not to say for whom or on what project he is
working because it’s secret. So then you can’t disclose
everything and have to say something like “I’ve got a large
contract but can’t say what it is about. There I’m working
with Cocoon.” So we try to handle this as open as possible.
Everything we do is open. Everybody see one another’s code
and so on. This has consequences on how one talks on the
mailing list. On mailing lists you can communicate only
through writing and it’s asynchronous. For many people Eng-
lish is not their native language and also the mentalities are
different. We have people from Europe, America, Australia,
South America, Russia, people from everywhere. So you
have to take care how you say things. So when I think that
somebody wrote something weird in his email I have to com-
ment cautiously e.g. “*I believe* that’s wrong.” or “I’m a bit

worried about that.” Not “You are dumb and what you’ve
written is stupid.” So often we realize we misunderstood it or
he didn’t write what he meant because of his English. It has
to do a lot with open communication, politeness - not mean-
ing political correctness, just common politeness and respect
for people.
In the Apache Foundation we are also cautious about busi-
ness interests, because most of the committers do business
with Cocoon. So we have to be aware that on one hand we
work for the project and simultaneously we also work for our
business. But business must not harm the project. This is im-
portant. We also make sure new committers really understand
this.
In what areas can you still use new community members?
What I try to do is - because I also give classes in technical
schools - is to find students who want to do their diploma
thesis about an open source project. There are some great
projects for these people like for example automatic testing.
This is interesting to do and also very specific. In this way
these students could make a name for themselves, as contrib-
utor or even as committer. If somebody writes a lot of code it
will be noted somewhere - you get credits. We already have a
lot of automatic tests but we can never have enough of them.
Also e.g. the documentation is something where we need
people. They’re harder to find than people writing code. Be-
cause usually if people need code they just write it. So when
I’m working on some project and need a component then I’m
just going to code it. Of course I also contribute it to Cocoon
and so it and also my project get better. Maybe somebody
even sees my code and thinks “Oh I can make that better.” so
he improves my code. With documentation it’s different.
Usually if somebody writes documentation it’s useless for
him afterwards. He understands it now and doesn’t need it
any more for himself. That’s why it’s much more difficult to
find people who invest personal time into the documentation.
So there is actually no advantage for the documentation
writer himself?
Yes exactly. When I write some code I can use it afterwards.
But when I write a documentation I can’t use it any more be-
cause I’ve now learned it, so that’s it. So there’s a difficulty.
Many open source projects that have good documentation got
it sponsored or the project itself is sponsored so they can in-
vest money into the documentation. The authors then earn
money for writing the documentation.
I don’t think many people do contribute to open source pro-
jects just for fun. People are willing to give but also want to
get something in return. So here you see it very clearly. I’ve
no problem with that at all; one just has to find a balance.
So what can you get from writing documentation?
What you might get from writing documentation is a good
reputation as writer, which might lead to writing magazine
articles. Or as the author of the project documentation it
might be interesting to write a book. For the project it’s
definitively positive to have good documentation but for the
writers it might be difficult to find incentives.
Maybe holding workshops or something.
Yes. For example I wrote a tutorial about Cocoon for a com-
mercial workshop I held and after few months I contributed it
to the project so others could also use it and improve on it.
This can be a model, but it was just one case for me.
What tasks can be executed by non-core developers?
There are lots of things. Cocoon has a core and this might be
more difficult to work on. It consists of a few hundred classes
maybe, not very large but quite complicated to start with.
There are maybe 10 committers who comfortably work on
the core.
Stefano, too?
No he’s not very active on the code but rather concerning the
vision and so on. Now he works at MIT on a semantic web
project. He definitively uses Cocoon there but doesn’t write a
lot of code for Cocoon currently. He did renew the build sys-
tem about last year. Not that many lines of code but very im-
portant code.

Appendix Page 124

Then there are the Blocks, modular parts of functionality.
They are completely modular so everyone can write a new
one.
What are these Blocks for?
For example the PDF formatting is one Block. It uses the ex-
ternal component FOP (Formatting Object Project). So the
Block is actually some Java code that integrates FOP into
Cocoon. This Block consists of only a few lines of code but
you still have to write it for the integration of the different
properties and so on. It’s quite simple to write such a Block
so people can participate easily.
Also writing tests could be something for non-core de-
velopers. Maybe it’s even better if there are others who write
the tests because they have a different view. So since Cocoon
itself is very modular it’s quite easy for people to contribute.
Is there a list of available or desired Blocks?
There is such a list. We use BugZilla to manage the issues so
everyone can add a wish. But we also noticed that ideas are
cheap but the realization is costly. This means if somebody
has a great idea we ask: “Oh cool, so when do you start?”
That’s the usual question. It’s much better if people come
with at least a prototype they already programmed to demon-
strate the concrete idea. Usually the committers don’t have
time available, they are all occupied. If they have spare time
they usually work on their own ideas.
So it works only if people do the programming by themselves
or at least try and then ask for help for the remaining 10%.
Then we see that they’re doing something. Maybe somebody
can explain it to them and needs only five minutes for that.
So people who have ideas but can’t finish them on their own
will get lots of help by the community. People who have just
an idea will usually get the question “When do you start?”
Are these people usually external or internal to the com-
munity?
They can be both. Usually these are people who have a spe-
cific need. Maybe they programmed something which isn’t
optimized for Cocoon but if the idea is good others will take
the code and improve it. It might end up in a completely new
functionality.
Is this one way to get into the community?
For sure. Somebody who arrives with a specific idea and
code to back it might be quickly invited.
What could you as core developers do to attract more such
people?
Just make sure people receive help when they come. Even if
we think it’s rather a strange idea we try to make the people
explain it. Only if we see it’s already inside Cocoon we’d tell
them “Oh we’ve already got that.” Often they just don’t
know it already exists in Cocoon. People who come with
code or specific examples quickly get into the community - if
they have the same mentality. Frequently there are people
who say, “This component is very bad. I’ve done something
much better.” When they start like this we might answer
“But we already used this bad code in many applications and
it works very well. So what do you think?” So we are some-
what critical, too.
Is there an explicit credit system?
Yes. We have a status file where all the changes are logged.
So when I get a patch from somebody I as committer integ-
rate it into Cocoon. Then I’d enter into the status file that I
implemented the patch, which was created by this other per-
son. That’s for minor contributions. People who contribute
larger parts are mentioned in the credits file. There you’ll
find, “part X is donated by company Y” or “developer A
wrote code B.” We take care to give people their credits.
What influence does this practice have on the community?
It’s important to recognize people for their work. And for
someone like me as a self-employed person it also has busi-
ness value. This is my reference. People contribute so we
have to give them something back. We can only give ac-
knowledgement, neither money nor rights because with the
Apache code everyone can do what he wants. Of course
there’s also the community and that’s fun, but the other side

is very important.
What license do you use?
The Apache Software License. It’s prescribed by the Apache
Foundation. To simplify, most everything is allowed with
Apache licensed code as long as credit is given to the Apache
Software Foundation. It’s a very open license; you can even
sell your software. But you have to mention that the code
comes from the Apache Software Foundation. That’s all.
What do you think, would there be a difference if Cocoon
were under the GPL or LGPL or BSD license?
Having a GPL or LGPL license would make a big difference,
BSD not as much. The ASF license is friendly to companies
so they can earn money with it. Also the committers are very
well protected by the license. Nobody can sue a committer. If
anything judicial happens everything is forwarded to the
foundation. We are very well protected. If for example I made
an error in my code and some user of my Apache Cocoon
software has problems because of that he can’t sue me since
it’s all managed by the foundation.
What influence does this have on people who want to parti-
cipate? Do they actually think about that?
Not many people think about it but later on they might think
it was good for them like that.
Is there a clear release management?
Yes, we have a release manager in the project. It’s his job to
do the releases but it’s also documented how to do that so
anyone could do this, technically. In addition, he has to sign
the release digitally. A vote is required to do a release, ac-
cording to the ASF rules.
Where do you publish releases?
There are mirrors. The Apache website has very good mirrors
because it’s also used to distribute the Apache Web Server
which has much more downloads than we do. But we can use
the same infrastructure. There are mirrors in Switzerland and
elsewhere.
Can you tell more about the community? Are there other
specific roles?
There are the committers, then the PMC - in Cocoon almost
every committer is in the PMC since everyone can say if he
wants to join or not. The PMC has a chairman, a director
who has to report to the Apache Software Foundation Board.
He has to send a report x times a year to the board on how
everything goes in Cocoon, if there are technical or political
problems, how we advance and so on. So the board gets
some kind of an overview of the current state of the project.
Then there is the release manager and that’s about it, I think.
So there is no documentator, no bug fixer and so on?
No, the committers are responsible for the rest all together.
Of course everyone is specialised somewhat but that’s not of-
ficial. Officially there is only the release manager and the
PMC chairman.
What influence does the Apache Foundation have on the
project? Imagine e.g. Cocoon were not an Apache project,
what would Cocoon then look like?
The reputation is certainly good. People know that the
Apache Foundation is here to stay, it is well known for many
years now. Also our license is “clean” so people can do any-
thing with the software and they will not be legally harmed as
long they retain the credits and don’t misuse the Apache la-
bel. For example they can’t call their company “Apache Co-
coon whatever.” Also the logos are protected and such
things. But for everything else one has lots of freedom to ap-
ply the Apache License without being sued. So the reputation
is definitely important.
And there’s also the infrastructure. There is a very good in-
frastructure since it gets paid by sponsors, companies and in-
dividuals. We also benefit from this. So it’s certainly good to
be part of the Apache Foundation.
It’s a little bit more difficult today because the foundation
has grown and there are many new projects now. It started
out quickly as a very tiny organisation so we have to adapt to
these changes. When more and more projects are included

Appendix Page 125

one has to take care to retain a clear overview and an appro-
priate support of the infrastructure. Maybe it would become
necessary to hire people to do that.
Is there anyone employed by the Cocoon project?
No, the Apache Foundation has no employees at all. The
ApacheCon, the Apache conference, is organized by a com-
pany that gets a part of the money that is generated by the
conference. Voluntary work wouldn’t be appropriate here
since it’s an international conference. That’s the model for
the moment. Maybe if the foundation continues to grow we
might need part-time employees like a secretary or something
like that some years from now.
How do you communicate in the community? Do you have
several mailing lists for example.
Yes, we have one mailing list for the core developers, one for
the users and a closed one for the PMC. There was a docs-
specific mailing list but it’s not used anymore. We handle
documentation issues on the main “developers” mailing list
now.
Do you have IRC?
Yes, there is an IRC channel for Cocoon. But it’s not used
very much. There is a so-called First Friday meeting on IRC
every month. It started about one year ago. As many of us as
possible try to be there so it’s very good if it works. But it
doesn’t work all the time depending on the level of occupa-
tion of each of us.
Are there also physical meetings?
Yes, there is an annual Get Together. This year we had it for
the third time. This is very good. This year we had 130 parti-
cipants, quite a lot for one single project. The first day was
Hackathon, bug fixes and so on, the other day was confer-
ence and in the evening we had some social event.
Who organizes this?
It’s organized by Orixo, a group of companies who all do
business with Cocoon. They organize the meeting. The
people are also part of the community so it’s not just a busi-
ness-only thing without any relation to the project. They are
very sensitive about being part of the community and at the
same time doing business with Cocoon. It must be fair play.
And it works well.
How about entry fees?
It’s very cheap, about 60 euros for the conference, just to
cover the costs. I gave a lecture so I got there for free but did-
n’t receive anything else.
Can you categorize the community somewhat?
Yes, there are people who are in Cocoon since the beginning.
Others did just one specific project with Cocoon, for example
generate large PDFs with Cocoon. Again others have a broad
engagement since they work as consultants. Or there are
companies who use Cocoon as their only tool. So yes, there
are certainly categories. Also because it’s modular.
Do you see people who for example start using Cocoon and
later on work on the core?
This is the usual way. Cocoon is really a tool for developers.
Usually after some months they get into the code and so they
can also help to contribute. This is a big advantage of the
project. The users of Cocoon must have almost the same
competences as the developers which means they can quickly
change from users to developers. In other open source pro-
jects that’s not the case. For example I started Jfor some
years ago, an XML converter to RTF, Rich Text Format, for
word processors. There the user competences vary a lot.
Users just want to generate documents so many of them
don’t know Java and thus can’t help with the code. After sev-
eral months there still was no community. It was much more
difficult to grow a community because the people were dif-
ferent from those in Cocoon.
So you initiated Jfor yourself?
Yes, it was for a customer of mine who agreed to make it an
open source project. It runs, we didn’t change the code for
one year now, it’s stable. It’s limited, you can’t do everything

you’d like with it but it works well. It’s published on Source-
forge.
What influence does the name “Cocoon” have for the pro-
ject?
Mainly that it’s well known now after some years. You can’t
tell from the name “Cocoon” that it has anything to do with
XML and web application. People know more or less what it
is about. Sometimes they have a wrong idea but at least they
know it.
Could you comment on the future of Cocoon, in one or five
years, say?
The functionality is quite stable now. We’re rather in a con-
solidation phase because last year not that many new features
were added. There is one major change coming concerning
the configuration of the functional Blocks. Now you have to
compile them but we would like to do this more dynamically
at run time. So you would just need to download the Blocks
and plug them into Cocoon. This will be a big internal
change in the future. Otherwise I believe we’ve used the 2.1
release for almost one year. It’s stable and you can do a lot
with it. I think it might even stay like this for the next couple
of years. Maybe 2.2 will include the new Block system.
Technically there will be not much change.
We speak about documentation almost every week so I guess
we will improve in this area. We also see many new names
on the users’ mailing list, names we don’t know. So this
means it grows and more and more people use it.
And can the members help each other?
Yes the users’ mailing list is meant for that. The users shall
help each other. Many developers are not on that list. And
still it works. Some developers do look at the user list. But
sometimes we just leave a question. It’s better the users help
each other so they increase their knowledge and we save time
to concentrate on developers’ issues. I believe we have about
1000 people on the user list and 500 on the developer list.
And about 40 have commit access.
What entry barriers are still there ?
I think the most important is to say exactly what Cocoon is
and what it is not, so people would know quickly if Cocoon
is something for them or not. With the current documentation
it might take some time for a novice to realizes if it’s
something useful for him or not. If we want to enlarge our
community we have to simplify this. On the other hand we
might not want the community too large because we also
have to support it. It has to grow at a certain rate so we can
still bear the growth.
I forgot something about the community structure. In Cocoon
there are just the committers but in the Apache Software
Foundation there are also the members. If you are a commit-
ter in a project and the members see that you’re not just inter-
ested in your own project but also in the Apache Foundation
in general you might get nominated to become a member.
There are about 1000 Apache committers worldwide in all
projects and about 130 of them are members. And then there
is the Apache Board, the directors, six or eight people who
are elected each year.
Are there any additional comments you would like to add
concerning community building?
I think respectful communication is very important for us. If
a conflict happens on the mailing list, for example people get
angry and disrespectful, we interfere immediately. I believe
the Cocoon community is very good. I’m there since about
2000 and I think since then only two people left the com-
munity because of disagreements. That’s not much compared
to the about 100 daily emails on the developers’ mailing list.
Of course we don’t agree all the time but as long we can dis-
cuss openly and with respect it’s ok. But if for example
somebody says something wrong another might write back
“Please apologize, what you said was not right.” It has
happened a couple of times so far. After some incidents
people start acting respectful automatically. So when I realize
I wrote something wrong I reply myself: “Oh I’m sorry, I did-
n’t mean it like that.” I believe this is very positive. Maybe
it’s because many members of the Cocoon community also

Appendix Page 126

do business with it and have a company. So if something
goes wrong you can’t just say “I’m leaving.” because it’s not
just a hobby but your business. I think that’s the reason why
we take care to have a clean communication. I see other pro-
jects which are very different. They have these flame wars,

nobody interferes and it gets worse and worse. This happens
very seldom in Cocoon and if it does there’s always a quick
reaction like “Here you can’t talk like this. Please come back
to the right level.” That’s very good.

Interview with Guido Wesdorp, Kupu on 25 November, 2004

First I would like to ask you about your education and how
you got into the Kupu project.
My education is not really relevant. I did some High School
but that’s about it. It was during the .com-Bubble I decided
there was money in computers. I was always into computers
like playing games, making music and so on. So when I saw
that people are making money using computers it still inter-
ested me a lot. I decided maybe now was the good time for
me to teach myself more about them and get a job in that dir-
ection. And that worked. So I worked for a couple of web de-
veloped companies first as a HTML designer, then I started
hacking JavaScript and then PHP, later Python. That’s how I
came to work for Infrae, the company I work for now.
They’re doing Zope development mainly and open source de-
velopment. That’s how I got to know the open source world. I
really liked it and stayed with Infrae for a while. They needed
a What-You-See-Is-What-You-Get editor. At that point there
were some possibilities and we tried some. Most were either
very hard to implement or didn’t work on the browsers we
had in mind like IE and Mozilla. We use Mozilla all the time.
After some point when we tried some proprietary and some
open source ones we decided to build one for ourselves. Or at
least adopt an existing project. That was Epoz at that mo-
ment. We worked on Epoz for a while. Then Mike Jablonski
said he did want to develop it further for himself. That’s why
we formed the project called Kupu. That’s what Kupu is right
now.
So Kupu is actually the descendent of another open source
project?
Yes, right. There was a small editor written by Mike Jablon-
ski who does a lot in the Zope and Plone world. For us it was
an ideal project to step into but it didn’t have all the features
we wanted.
For example?
It hardly had any image support. You could add a URL to an
image but you couldn’t browse to it. It wasn’t very configur-
able and it was Zope-only. This was something we decided
wasn’t a good marketing aspect of the editor so we decided
to change that, too. It used pretty old JavaScript techniques
and so those things we wanted to change. We asked Mike
Jablonski “Would you mind if we joined development?”
Then he sort of told us he didn’t plan on developing it further
by himself. So that’s why we decided to develop it ourselves
completely or take over the project control. And later on
Mike Jablonski decided he did want to develop it a bit fur-
ther because people still had bug fixes and that sort of thing.
That’s how it all started. Then it became Kupu.
When was this?
This was about one and a half years ago [2003].
Now you are several persons, Paul Everitt, Philipp von
Weitershausen and you.
Yes, there are currently a couple more. It started out actually,
I think, Infrae asked Paul Everitt to work on the project. At
some point he had some problem with design and blabla.
Then I joined him in developing Kupu. That’s when the first
Epoz release got built. So at that point it was only Paul
Everitt and me. And Philipp von Weitershausen joined at
about that moment. He didn’t do much JavaScript program-
ming but did more the Plone integration and some other Py-
thon backend stuff. Those three are still in the team so I’m
still one of the main developers. Paul Everitt sometimes does
some stuff, too, and Philipp von Weitershausen still does
some administration. Some additional developers now like

Duncan Booth who works in some other projects, he works
on Plone integration. I think currently he does more check-
ins than me. And there are a couple of people who work on
separate implementations such as Rolf Kulemann for Lenya
and some other people. So the group is still growing and I
hope that it will continue.
Yes right, we would love to implement it into our PHP5
framework. I wrote to you before.
Yes you wrote, if you have any questions just let me know!
That’s probably going to happen. Can you actually say
there are different jobs in your project? Or can you say that
everyone works on every part?
Everyone is allowed to work on every part but as usual every-
one has his own favourite parts to work on and some stuff he
benefits from. I think there isn’t really someone in the project
that controls it and says “This should be done and this should
be done.” Everyone just works on the thing that he thinks is
important for the project or for his personal benefit at this
point. And so far it works quite well. Obviously we’re still a
quite small group but it works nicely.
Do you share one common vision or goal?
Not really, it’s pretty anarchistic in that sense. So it’s really
who wants something to be done he does it. And so far it did-
n’t turn into clashes which is sort of surprising. Still it seems
to work quite well. In the end it’s probably still me who will
say it. Usually some feature starts out on a mailing list, like
someone asking “Hey is this possible?” And if so, why didn’t
we do it? So we gather discussion where the feature is dis-
cussed and sort of forked out. And if we all agree it’s a good
feature someone will write it. But it’s not always like that.
Sometimes people just start writing features, add them and it
works out. We do have the advantage in Kupu that it’s quite
much large so the chances of features clashing, even though
they can’t coexist in the same setup, are quite small.
When was Kupu published the first time? Like on the
OSCOM Website.
We didn’t go to OSCOM at first. The original Epoz project
was run on zope.org because it was a Zope-only thing. So we
decided to do the first releases on zope.org, too. And it was-
n’t until we went to Switzerland for some reason. I think
there was a Sprint or some discussion about editors on client
side that can help open source content management systems.
That’s when I got to discuss with Philipp von Weitershausen
by the way. We had the Epoz issue at that point. That’s when
we decided to change the license to a better known open
source license. So it’s now BSD style rather than the Zope
Public License it used to be.
Why did you do this?
Mainly because Zope Public License, it’s liberal and all that
but it’s not too well known. So if people hear Zope Public Li-
cense... We wanted to get rid of the association between of
what is now called Kupu and Zope because Epoz used to be a
Zope only thing and at that point we already decided that we
wanted to have it working - because it was quite easy to get it
working - on different systems. So that’s why we decided to
get rid of the ZPL and to put in a plain one, a better known
one. It came to a C license. It’s also easier for instance for the
project we’re working on at Infrae, Silva. It’s also to be a D
license so it cannot use something like the GPL, it has to be
something more broad. BSD is just very plain and simple. So
we decided that and also we will be moving to OSCOM and
we decided on a new name. So the first Epoz release was on
zope.org and Kupu, I think it was Kupu 1.0.3 - because we

Appendix Page 127

continued the version numbers we started out with Epoz
1.0.1 and 1.0.2 on zope.org I think - and I think it was Kupu
1.0.3 on oscom.org the first release.
Why did you do all these changes?
Mainly because we were still in Mike Jablonski’s area. I
mean Mike Jablonski had somewhat promised “OK I will not
develop it any more, you can have the project.” When he de-
cided to continue anyway we sort of felt sorry for him. It was
sort of a nasty situation because people didn’t know what
package to download anymore. “Was it Epoz 0.x or Epoz 1.x
or Epoz ng or all the new generation?” It was really confus-
ing so we decided we didn’t want that anymore. And also it
was bad for an open source project name if it had different
forks and that sort of thing. That’s why we decided on a new
name and a new image. That worked rather well. Occasion-
ally we still hear people searching for the Epoz 1.x version
and “Where can I find it?” But it was way less painless than I
expected.
What are some technical aspects that have an influence to
the topic of community building?
Kupu uses a basic witched that’s provided by the browsers.
That’s called Content Editable for Internet Explorer and Mi-
das for Mozilla. That was an Internet Explorer only thing and
at some point the Mozilla guys decided that’s a very useful
witched. There was no standard but everyone was using In-
ternet Explorer any ways so they decided it was a nice idea to
pick that up, too, and use it in their system. Unfortunately
it’s not entirely one-to-one mapped but it’s usable now, at
least for basic editing such as making words bold and that
sort of thing. The real core of Kupu is some browser built-in
thing and then there is a large gloss around that which con-
trols that and puts some additional function on top of that to
make it easier to get like more custom element types - the
witched only supports a basic set of element types. That class
provides some methods to make it easier to add stuff like
tables for instance and images. There is also a set of tools
which are basically plug-ins. Kupu works with those plug-ins
even for the core tools. The basic tool set is already done by
using the plug-in architecture. And then there is a set of help-
er classes to control the selection for instance and a large set
of browser abstractions because there are still a lot of
browser differences.
What do you think is the influence of plug-ins concerning
community building?
I think it can be very important. Right now we unfortunately
don’t focus on plug-ins that much. But I’m trying to shift
from using the plug-in architecture not only to add core fea-
tures but also trying to turn the core features into plug-ins
and try to exploit the plug-in architecture by making it easier
to add third party plug-ins and extensions. But right now I
think we still do too much in the core which is not that much
different from actually writing the plug-in. It would be quite
easy to grab the stuff from the core and release it separately.
Maybe we do that at one point because it’s nice that you
don’t have to care too much about all kinds of extensions and
like niche areas if you do a core release. So it makes main-
tenance easier for sure.
Would those help people to get into the project without
knowing everything?
That’s what I hope. I mean Kupu is definitely a framework in
the sense that you need not building your own libraries for
your application but you put small scripts into existing ap-
plications. In that sense you need to know a lot about the
framework. For instance Zope. You can’t do anything inside
Zope without knowing at least half of the application’s API. I
think that counts a bit for Kupu, too. Although we tried to
keep the plug-in API simple and comprehensible, I think we
kind of succeeded in that. I don’t think it’s really hard to
write Kupu extensions. Maybe it’s even easier to write exten-
sions than to configure it. That’s probably not a good thing.
How about documentation? Do you have a tutorial to write
such plug-ins?
Yes, it’s definitely geared towards developers so it’s not very
elaborate and doesn’t explain in detail how to do each and

everything. You are obviously working in a JavaScript envir-
onment which is really corky and there is quite a lot of stuff
to be told to actually to get something to work. And the docu-
mentation doesn’t contain any side notes how to build
something in JavaScript and so. But I think it’s decent in the
sense that it’s short and compact but it explains what you
need to know. For an open source project we’re sort of okay I
reckon.
What do you think, what would change if you had a more
elaborate, more detailed documentation?
Yes I think it would help a bit although I think would still
be... I mean you can’t explain everything in your documenta-
tion so you’ll always get complaints from people that they
don’t understand this and that and we should have explained
that in documentation. We have that now and I think we will
always have that. I wonder how much of a difference it will
make. But sure, if you have a bit more explanatory docu-
mentation it will probably help in development. Although I
do have to add since we have a mailing list and a lot of active
developers... I don’t think it’s hard to get the information you
want by asking on the mailing list. That definitely makes a
difference.
Where could you use now the support of the community
members? What tasks could non-developers do and what
tasks could not-core-developers accomplish?
I think people who aren’t developers don’t have that much
stuff to do in Kupu. I mean for the users there could be some
documentation written. There is some documentation actu-
ally but it’s specific to Silva and there is no Kupu author
documentation. Well it’s really straightforward. It’s a quite
familiar interface that looks a lot like any old commercial
word processor so I wonder if there is much to do in that
sense. But for developers... I think you don’t have to be a
core developer to work with Kupu. If you pick up a docu-
ment “About extending Kupu” you can have something
working in a couple of hours. That can be very useful to the
core too. And actually we have some people just occasionally
drop by to fix small issues and small CSS thing and that sort
of thing. Those people are very useful too. I think it’s nice
about the Kupu project. Usually if you have an open source
project it’s a core group of developers and not much people
around it but in Kupu there are a lot of different stages of de-
velopment by different people going on. And that’s nice,
that’s also encouraging.
Who has now commit access? What would I as a newcomer
have to do to get commit access?
I think the only thing you have to do is showing that you are
enthusiastic about changing something and preferably show-
ing that you are not going to mess up anything. Currently we
are on Codespeak, a server that is run by a friend of mine. It
has kind of a nice setup there that he has this SVN [Subver-
sion] repository and some other stuff that is shared by all the
users. So if you are a developer on one project you also have
commit access to all other projects. And of course this means
you have to be sort of trusted to get access. But right now we
don’t have really high standards to get commit access. If you
mention on the mailing list you want to commit something
chances are that you’ll have commit access now or later. In
that sense I think we have currently 20 or 25 developers in
the project.
How is the release management organized?
That’s usually done by one or two people. Usually by Philipp
and me. Currently there is a release which is worked mostly
by Duncan Booth. I think he’ll have more of a saying in this
one than Philipp and me do. But usually it is done by Philipp
and me. It’s just easy: We say one or two weeks in advance
“Please check in your changes, we do a branch and do a re-
lease of that branch. And that’s the branch...” Nothing fancy.
So you don’t have a clear feature freeze thing?
We try to do that with branches and of course we have sort of
a bad release candidate if we need to... So we do have sort of
a stage where there is a feature freeze. We are not allowed to
add any features unless it’s unlike something breaks.

Appendix Page 128

Besides the release management are there any other tasks in
your community? Can you structure the community some-
what? For example is there somebody responsible for the
website or for any other thing?
No, in that sense we are also sort of anarchistic. I think now
three people have access to the website and if we see that
something is wrong we just change that. Usually the website
is pretty static actually. So we have the release and make
notes about that and that’s usually done by Philipp and me,
too. So actually I think in a sense Philipp and me are like the
spokes people/managers of the project. But it’s really very
loose. So if anybody wants to do something they are definit-
ively invited to do so.
So you are a quite open community?
Yes, yes, that’s what we try to be!
Is this also part of your philosophy?
Maybe part of my personal feeling. Personally I’m a hacker
that likes to work on new projects and I’d love it if these pro-
jects could gather a life of their own. That’s more or less
what I’m trying to do with Kupu. It’s not that I want to step
out of it completely at some point but it would be nice if
most of the work and thinking is done by someone else. Cur-
rently I think we are succeeding in that quite good. I think
it’s always important that there is someone who is really tak-
ing care of the project in a sense that he always keeps an eye
out if things are not really going wrong and that sort of thing.
And there is quite a large probability that I’ll always be that
person and that people somewhat depend on me. There
should be always someone who answers emails on mailing
lists that don’t get answered and that sort of thing. I don’t see
someone else picking that up easily. But that’s only a minor
part of all the work that needs to be done. Currently I do
some check-ins every now and then, specifically for Silva
and Infrae, but most of the features are written by other
people, that’s really cool.
Why would you like to have a large community?
I don’t know why. It’s good for the project obviously. More
people use it and more people develop it. It depends whether
it’s not going to be chaotic. You don’t want something
chaotic. But as long as it is managed a bit of a proper way I
think it’s nice to have a large community of people thinking
about and discussing it. And it’s just fun in a way to see
something growing, that’s probably what I personally like
about the project.
Where are still barriers to prevent your community from
growing? What needs still to be done by you as the coordin-
ator to enlarge the community?
As I said the mailing list is important. People keeping com-
munications going, people helping new users and new integ-
rators and new developers, that’s very important. Usually if
you are a developer of a team you answer to the emails you
find interesting or important. And that means that some of
the emails will not be answered. And I think it is important
that those get answered, too. So that’s something I still do a
lot for the community. And of course I manage the mailing
list and website, that’s still a lot of work. And every now and
then I try to sort of veto features and help people out find
their way in the API. And of course I still do some develop-
ment from time to time.
Can you sort of categorize the people in your community?
Yes, I think probably most of the people are integrating Kupu
in their project and benefit from either extending or changing
it a bit. Or they are trying to do special configurations. There
are usually only developers, hardly any users. We do get
some user complaints but these are mostly from the de-
velopers, too, because they are usually the spokes people of
the ones that actually use the editor.
Could somebody who doesn’t know how to program design
new buttons for example?
I think you need to know JavaScript and a bit of the Kupu
API. As I said currently configuration is still a bit hard, it’s
mainly done in JavaScript and that’s why you at least need to
know a bit of JavaScript to get your stuff working. Also for

the behaviour behind the buttons you need to know a bit
about the framework. Usually if you add a button you add a
tool too, so usually a button gets a very simple plug-in back
end sort of thing.
Do you coordinate development, for example with a task
list?
No, not at all. We have an issue tracker and if people post is-
sues to that we can sort of assign people to that. But I don’t
think that is managed either, people just check out the issue
tracker once in a while and say “OK, I can do that and that”
and tackle the issues. Just before a release I usually crawl
through the remaining issues and try to get them fixed. That
works quite well, usually people do their best to pick up the
work that is necessary to get a cool stable release, that’s cool
too.
Do you have written down the names of these people,
something like a credit system?
Yes, we have a credits text file in the package. I don’t think it
mentions all the developers. Maybe I should correct that. It
has been a while since I last did changes in that. But apart
from that it’s really sort of anarchistic, really open, really
anyone can join and do their thing. And as long as the re-
leases are stable it’s a also OK to mess about with the trunk a
bit if you want. I do have to add that most of the people who
are sort of new either work on a branch obviously or work on
integration stuff in their own directory, so it doesn’t happen
very often that the core is broken or anything.
Is this a typical way to get into the project?
If I get to speak to the people who get into the project usually
they are already quite far because they already picked up a
project at home - and the sources are quite small still, about
15’000 lines of code, so it’s quite understandable. So it’s not
too hard to get into the project, so usually the people to
whom I speak on the mailing list are either indeed asking for
small issues because they are configurating or integrating
something and don’t get it to work. Or they have already
played around with the API a bit and really know their thing
and want some help. And sometimes I do have to point out
that “Hey, wait, what you are trying to do is already covered
by some helper library or something.”
So this is also one of your tasks as a project coordinator or
initiator to give information that is only known by the
someone who knows the project entirely?
I think that it’s both because I’m the project manager so to
speak - I find that hard to say about myself because I’m not
really a one-person-thing, it’s really the community that man-
ages it itself, and that’s very cool. I really like that about
Kupu. But it’s also... Since I wrote most of the API I know
the API better than anyone else I’d say - maybe Duncan
nowadays knows as much as I do. So Duncan and me are
usually the people who help out with API questions.
About communication: Do you interact mostly with the mail-
ing list?
Not only. Our IRC channel is always quite active and a lot of
people pop by at IRC before visiting the mailing list. It’s just
easy to get an instant response, it’s an easier way to commu-
nicate. And then they choose following the mailing list or the
IRC channel, too.
Is there any log of the IRC channel?
No, but I think you can log it by the way, I think there are
different options to do so. You can either do a client log by
yourself depending on the client you use. Or you can even
ask some logger to join the channel, I don’t know much
about that. But currently our conversations are not logged in-
deed so it does happen that people ask the same questions
twice but then we will answer twice, it’s not that bad.
Did you already have a physical meeting like a Sprint or
something?
Not specifically for Kupu. I don’t know if that’s ever going
to happen, too. It’s people are just far away. I think that Kupu
is already quite mature that in a sense that - it can always use
new features and extensions but... Maybe for a complete revi-
sion. At some point I would like to rewrite Kupu from

Appendix Page 129

scratch because I don’t like certain parts about the content
editable parts - it’s impossible to change those. But that’s
really way away from now so I can’t do any more assump-
tions about that. As it looks like for right now at least for
Kupu 1.x we will never have a Sprint I think. I mean if
people are interested, I’m interested too. I think development,
as it goes right now, goes quite fast. Not like these huge,
monolithic projects that just need a Sprint to get the first
head start or so.
Is this a certain characteristic of large projects?
I was sort of afraid that you would continue on that one! It
was just some statement. But let me consider this before I
give some stupid remarks.
You are an expert, you have experience.
Well expert, I’ve been only programming for six or seven
years and I work in an open source company for only three
years or so, I’m not really an expert. But I know something
about the community, at least I should.
So maybe, I think so. The sprints I’ve seen so far are usually
for larger projects. When I think about a Plone Sprint for in-
stance it’s just to get stuff done for a project that is already
long running. It’s not by definition for a monolithic start-up
or something. I was maybe a bit overdoing it.
How important are personal relationships among Kupu de-
velopers?
I don’t think that they are too important. I mean it’s nice, es-
pecially for Paul Everitt and me it has been nice to discuss
some issues one-to-one, just for the start-up. We made a lot
of progress there. But I think most of the people that are cur-
rently developing Kupu have never met each other. I’m prob-
ably the one who knows most of the other people. But it’s not
like important in a sense “Hey we met so we can work better
with each other.”
Why is there a difference compared to Plone where personal
relationships are very important?
I’m not sure but maybe a difference is that Plone is way lar-
ger so you can actually help with large parties to do a lot of
hacking and have a good time and also make it sort of co-
ordinated because I reckon in a project as large as Plone it’s
way harder to coordinate the development team. It’s definit-
ively good to know with whom you are working.
Are you registered on SourceForge or any other open
source platform?
No, we used to be on SourceForge but partially because of
the slowness of communication we quit. When you post
something to the mailing list it takes a couple of hours before
it arrives, CVS access is slow. That’s understandable since
SourceForge is a large project. We were looking for
something more speedy. Partially because of that and par-
tially we liked the idea we decided to go for Codespeak. It’s a
bit more open than SourceForge. As I said if you have check
in rights on one project you have the rights on all projects.
And also you share this website. It’s a rather cool project, it’s
fast and has new tools and good infrastructure.
Do you still have an account on SourceForge?
We used to use the Epoz account and I think this is still used
by Mike Jablonski.
Could there be any marking reason to have an account on
SourceForge?
Yes, I can imagine there is. People look around for an open
source project and can find your project easier. But for us the
advantages didn’t count up for the disadvantages.
Is there any influence being an official OSCOM [Interna-
tional Association for Open Source Content Management]
project?
Yes, at least because it’s a cross pollination thing. We
haven’t been too active on that point but I do know that a lot
of OSCOM people at least know about Kupu, want to integ-
rate it into their system or already have it done. There is a bit
more communications going on. We have a couple of shared
mailing lists, not really active though. It’s a bit useful at
least, I think we still could improve it though. I would like it

to be a bit more active.
What would you like to change?
Currently we are indeed an OSCOM project but the Kupu
team is not really active in the OSCOM community. It would
be nice if that changed a bit. But that also requires some ef-
forts on my side but to be honest I’m very busy though.
How is the feedback of the users?
From users I don’t get much feedback but from developers
and integrators I often get complaints about it being quite
hard to integrate as I said it. It’s sort of hard to configure be-
cause you don’t have a configuration file where you can turn
things on and off. You really have to hack a bit of JavaScript.
But I think that is improving and apart of that feedback is
very positive. A lot of people are impressed of what Kupu
does. And I still get a lot of feedback of people saying “Wow,
I didn’t know this was even possible in JavaScript!” I think
the feedback is generally very good.
Besides configuration stuff, what do people demand?
We have a lot of requests for internationalisation. I currently
wrote a JavaScript library for internationalisation so we can
use that. And we had some requests for accessibility. And the
rest are usually just some small issues like if I press enter I
get a break in Mozilla and a paragraph in Internet Explorer.
And of course we have the sort of visionary developers who
every now and then think of a really cool new feature and
want to add it.
Concerning marketing: How do people find your project?
I think a lot of people find us by just googling and reading
new pages. Also we try to do some marketing from the com-
pany Infrae I work for. Of course OSCOM helps there and I
think Codespeak helps a bit there too because a lot of de-
velopers who are interested in new and innovative projects go
to Codespeak. Although I have to add that most of them will
probably be more innovative and a bit more Python de-
velopers than people who are just using a What-You-See-Is-
What-You-Get editor. Zope.org helps also, we still post some
news items to zope.org. And of course also to news channels
and Freshmeat. We do only post items on Freshmeat so we
sort of use it as an announcement channel.
What about the name of the project “Kupu”?
We couldn’t use “Word” so we took the Maori version. And
it sounded nice, we were looking for a short name. Actually it
was invented by a co-worker of mine. After a long vote on
the mailing list we decided that would be the best name.
What do you think is the influence of the name?
I don’t know. It’s hard to tell how much influence it has. On
the one hand it’s just a name, on the other hand it’s the string
- especially currently with Google and such - if you have an
unique, well findable name it’s definitively important. There
is some importance but it’s hard to tell.
Could you still rename the project?
I think it wouldn’t be that wise. Obviously we could but we
had to start a lot of things over and it would not be under-
stood by the users.
In general, how are people attracted by the Kupu project?
I would say it’s definitively the feature set because it’s pretty
feature complete compared to other open source ones. The li-
cense obviously, it got the most liberal license you can have.
But also the way we try to tackle things: It is completely ob-
ject oriented, it is very clean code, it has a nice abstraction
layer. I think it’s partially the appearance, what it looks like
and what it feels like for users. But definitively also the API.
I think the code is definitively a strong point in Kupu. And
what we try to do is leverage modern techniques of a
browser. Rather than using the old style JavaScript coding
we are trying to use new features of the JavaScript language
and also newer features of browsers to get a better user exper-
ience. For instance the PUT, we use HTTP PUT rather HTTP
POST. You can use POST too if you want to but that’s defin-
itively something that appeals to any user.
Are there any comparable open source projects like yours?

Appendix Page 130

Yes, you’ve got the bitflux editor but this is a way more
XML editor that tries to be more geared to really editing
XML schemes and that sort of thing. It’s a very cool system
by the way, too. And there is HTMLArea and so on...
A large difference is between Kupu and the other ones is that
Kupu is quite new compared to the other ones so it uses some
modern techniques.
What is the difference that Kupu was initiated by an indi-
vidual developer compared to a company acting as the initi-
ator?
Kupu was first developed by Mike Jablonski but I would
consider that this was a blue print for that what Kupu is now.
Then it was picked up by a commercial company that makes
open source software but makes money with it. I think this
was quite important to help with marketing and that sort of
thing. Just to give it a real push. I probably wouldn’t have
done it if it wasn’t for the time I could have spent at Infrae.
Probably the same counts for Paul Everitt, I think. I’m not
sure of course.
Why didn’t you call it Infrae editor?
From the beginning on it was clear that Infrae didn’t want to
market this as their editor. They wanted it to be an open
source project. Actually part of the reason that I started the
open source project was because Infrae explicitly didn’t want
to maintain a What-You-See-Is-What-You-Get editor them-
selves because it was a huge amount of work. I liked the idea
so much writing a What-You-See-Is-What-You-Get editor
that I decided to propose to do the initial work and a lot of
the maintenance work in my spare time. And to do the Kupu
work that is actually interesting for Silva during Infrae hours.
Infrae has written Silva and some customers wanted a What-
You-See-Is-What-You-Get editor for that so that’s why we
went looking for a What-You-See-Is-What-You-Get editor
for the first place. Kupu is only partially a company
sponsored project but the company backup was definitively
what made it possible to have got a feature complete editor.
So I think I spent about half the time at the company and half
the time at home. Kupu wouldn’t be what it is now if it wer-
en’t for either one of those parts of time. It’s really a sort of a
bit weird mix. When I was at work the Infrae people were
pushing me to get the Infrae work done and while I was at
home I looked at Kupu from a completely different perspect-
ive, from a manager of an open source project. While I was at
work I looked at it from an integrator’s perspective. It was
much fun to be these two persons at one time, also in relation
to the company. I think Infrae is a great company that I can
actually work for Infrae.
If the project was only from the company, would this have
made a difference concerning community building?
Yes, I think so. I’m not sure, it depends how Infrae would
have tackled this. If I look at other projects at Infrae - and I
can’t really imagine why they do it like that - but usually we
don’t have much outside developers. People can send patches
and that sort of thing but that’s not a community-like sort of
thing. While at Kupu I really try to emphasize that com-
munity thing by letting as much people work on it as pos-
sible. But if you have a product which you try to sell you
have to take more care having it stable and accessible and
consistent all the time. From a community perspective of
Kupu we can sort of decide to do strange, crazy things at
times and even release that and if it’s really bad we can sub-
tract it from the feature set.
What is the advantage of having you as a spare time project
coordinator and Infrae as a project sponsor of Kupu?
Concerning me I think it’s an advantage because I can look
at it from a pet project kind of view. I can just decide “Hey I
think it needs that.” and can spend like 20 hours on that spe-
cific thing even though no one is asking for that. For the oth-
er hand Infrae did really provide us with a lot of time and a
lot of drive and a lot of testing. That’s the advantage of a
large company. You have customers, you have people you
get feedback from them instantly, you have also a drive to
have certain features done because the customers ask for
that. It’s really a nice symbiosis there.

What kind of people would you like to have in your project?
I think I’m quite happy with the people we have right now.
Of course I would be happy for just about anyone joining. As
long as they try to be productive I definitively stimulate
everyone to join if they can. It’s nice to be talking about fea-
tures and directions to go. A group with really completely
different people that still have the same goal. That’s just cool
to watch that. But we don’t have a todo list for the com-
munity or a real direction in which we want to steer the com-
munity. We just let it flow and see where it ends. Currently
this works quite well, but maybe later on we want to change
that if something is going down with Kupu for some reason.
And what kind of people aren’t interesting for you?
That is a very hard one... There seems to be a group of people
that do not really understand that if they benefit from
something it would be nice if they contribute something. It’s
not that I wouldn’t want that people as users but we can’t
really use them in the community. I think that counts for any
community, that’s just a general rather than a personal issue
specific to Kupu.
I would say we could use everyone, please join!
What would you like to have Kupu look like in 1 or 5 years?
What is the vision of your project?
As I said I would like to rewrite the whole Kupu but this may
not be in one year and not in five years either. We are just
aimed for stability and hope for new browser features. Now
we are sort of at a verge of what browsers can do I reckon.
Obviously there can be a lot of other features too. I don’t
have this clear roadmap. I do think we can improve a lot. Ob-
viously world domination would be nice. I hope it will last
longer and I hope we can still grow, but I don’t have this
roadmap where we are going to - which is probably a good
thing too, I mean, we are really open to new ideas, open to
new features. I hope people understand that and are willing to
take that up.
It’s one of the goals of Kupu to leverage new browser fea-
tures as soon as possible. But unfortunately we are stuck with
Internet Explorer because currently it looks like development
there is almost dead.
And I think there are still a lot of things possible with JavaS-
cript. I’m currently working on another project too that does
WebDAV browser and a lot of other neat stuff. I think we
can still do a lot of cool stuff, too, even if we are stuck in In-
ternet Explorer.
So you are also working in another open source project?
That project is a pet project of mine that I’m currently the
only developer of. I’m going to release that and I hope prob-
ably in December. It’s going to be a JavaScript WebDAV cli-
ent which does sort of all the content management tasks com-
pletely from the client. So the only thing you need is a Web-
DAV capable server and then you just can login to that and
create new directories and new files and that sort of thing.
It’s going to be released in the GPL so the idea is after the 0.1
release has been done people can join - maybe I can build up
a community too, we’ll see. As I said I like starting up new
projects but at some point I like to see them getting picked
up by others too.
What should you bear in mind building up a new com-
munity?
I think the easiest way - although I’m not talking as I had
much experience or something because actually the only pro-
ject I helped starting out was Kupu and that already had a bit
of a start. I think it’s very hard to do the initial ground work
from a community. But as soon as you do some releases and
try to get yourself known in a lot of mailing lists and make
sure that you help anyone that wants to join the project. It
takes a lot of effort but I think it’s not that hard. As long as
you let people know that you are open for development and
have an interesting project it should go from itself.
What does it mean “if you have an interesting project?”
That’s hard to say. It’s so hard to say what people find inter-
esting. That’s one of the things with open source, you can
find something interesting yourself and you may have a lot of

Appendix Page 131

benefit of it. But if other people don’t find it interesting
you’ll not find any developers. I don’t know, it’s really hard
to say. It’s also something dependent on trends. It’s very hard
to say if a project is going to be successful or not. I do think
you can steer it a bit as long as you make sure that you don’t
piss off new users, don’t say nasty things about people and
try to take your time to actually help people to get into the
project. That way you can definitively stimulate getting a
community growing. And of course you have to do a lot of
marketing, make sure that you are known on the appropriate
open source channels. Like for instance Freshmeat, mailing
lists and so on. Of course you need an accessible and a bit of
a clean website, screenshots and so on.

Do you know any additional “do’s” and “don’ts” concern-
ing community building?
Don’t try to piss people off. Even if someone is complaining
about all sort of things on the mailing list, don’t ever make
fun of people, take people seriously and take your time. And
don’t be the one who starts a flame war. And do take your
time. That’s really it, it needs a lot of time, a lot of patience,
a lot of openness. And not trying to be too stubborn - that’s
probably a developer’s thing, lots of developers are very
stubborn about their project. You have to take your time to
consider what people think because what people think is im-
portant.

Interview with Michael Wechner, Lenya on November 31, 2004

What is your education and how did you get into Lenya?
Originally I studied theoretical physics at the ETH Zürich
and after that I worked for three years at the Max Planck In-
stitute in Düsseldorf. There I got into contact with the inter-
net and HTML for the first time. [...] I wanted to publish a
science journal with a global design so the layout and the
content had to be split apart. Then I began to write a CMS,
first with Perl because it was very simple to implement on
the server side. Then I learned about Java Servlets and XML
and so on. I also worked at the NZZ, Neue Zürcher Zeitung,
where I got into all the cross media publishing stuff. [...]
After some time I heard about Cocoon and downloaded it.
[...] Later on I contacted Stefano Mazzocchi to ask if the pipe
lines of Cocoon could process binary data, too, but he
answered this would never be possible. That was about the
end of the communication because I thought this was import-
ant. [...] So I started to develop my own CMS called XPS,
Extensible Publishing System. [...] With my company Wyona
we developed our open source CMS, basically for the NZZ
but from the beginning published under the Apache License.
By coincidence I got into contact with Giacomo Pati who
was involved in the Cocoon project and also worked in
Switzerland. So I had again contact with this community and
personally met some developers. I saw that Cocoon didn’t fit
our needs exactly but accepted that because it was better
building on something that already had a community than
doing my own thing. So in 2002 we migrated the XPS -
which was then renamed Wyona CMS - to Cocoon. And in
2003 we donated the CMS to the Apache Foundation.
Why?
At that time the Apache Foundation had decided they wanted
more top level projects - like the Apache Web Server or the
Java project. [...] Stefano wanted to make Cocoon a top level
project and have the CMS and other Cocoon based projects
as sub projects. He liked our software, because we had integ-
rated other stuff, so he asked us to donate it to the Apache
Software Foundation. For us this made sense because it was
open source anyway and also because of visibility reason.
What were the consequences when you joined the Apache
Foundation?
The community didn’t grow enormously. We already had
about 150 people on the mailing list when we joined the
Apache Foundation. How many we are now, I don’t know.
Nothing changed radically, maybe because in the beginning
we were an incubation project, one of the first ones. Apache
didn’t want to become a second Sourceforge so they intro-
duced the incubation process. In this way they can see e.g. if
the community works. One common problem with donated
projects is that they are often driven by a mono culture - all
the developers are from one company only or there is only
one developer. For the long term it’s important that the pro-
jects have a diverse community. So the projects who come
out of the incubation time may not have more than 50% of
the developers in one single company. Lenya - as our project
is named now - achieved this and we even became a top level
project this summer.

So how many community members do you have now?
I think there are about 10 to 15 committers.
How did you do community building in the beginning?
We didn’t do anything special, just answering mails and let-
ting people contribute. One thing that we did consciously
was to open up our development. Initially, the developers
came only from our company so we had a lot of internal
communication. So to make sure that the outside world was
informed about what was going on we consciously decided to
communicate via the public mailing list only. So now we
practically don’t communicate about Lenya internally any
more. This is very important because otherwise it would
seem like we did something for our private business cut off
from the outside world. I’ve heard of projects where this be-
came a major problem - even in Apache projects. For ex-
ample the Xalan project, the XSLT processing, was created
by Lotus, IBM. So one office was located just in front of the
other one and after they went out for lunch together they an-
nounced we will do this and that. They are really nice guys,
the problem was just that the discussion didn’t take place in
the open. So if you come from a company or any other closed
entity it’s important that the communication gets shifted to
the outside. You need to learn to distinguish between issues
that only concern the open source project and thus must be
discussed in public and between issues that are company spe-
cific, which you don’t want to communicate to the outside
world. After all, everyone on the mailing list has his own in-
terests and that’s ok. A problem arises only if you push your
interests in ways which usually aren’t possible for everyone
in a community like consciously leaving others outside of the
decision process. In the long term that’s bad for the com-
munity.
How do you open up communication?
You have to make your people aware that if they want to dis-
cuss something they have to do it via the mailing list. That’s
not very easy. I believe in our project it’s working this way
now but it wasn’t easy to achieve. You always had to say
“Write it in the mailing list. Write it in the mailing list. Write
it in the mailing list.” People are not used to open communic-
ation, they usually communicate in a closed way. You can
give them incentives, however. For example give them a way
to become visible. But there are people who don’t want that
or don’t need that. It’s important that they know that the pro-
ject needs this open communication, otherwise it dies and
this is bad for the company.
In all the Apache projects there are many companies particip-
ating, so you see very well - because you know the guys from
the conferences or because you watched them on the mailing
lists - when they made a decision before communicating the
issue.
What else is important to remember if a project is initiated
by a company?
Another important issue is to distinguish between company
time and spare time. We had to learn that when we do
changes in Lenya for a customer’s project of course it’s ok to
do that during working hours. But if somebody wants to code

Appendix Page 132

a features for Lenya without relation to a customer project
then it’s better done in spare time. Otherwise a mixing of
work and leisure time occurs which isn’t good. At least this
is my opinion.
Again another issue is the visibility of the company in the
open source project. For example we as a company dissoci-
ated ourselves from the project almost completely. Others
know that we belong to this company only from our email
addresses or because they know us personally. Most of the
people just see the project and the Apache Foundation and
any connection between the original company and the pro-
jects gets lost with time.
What about the Apache branding?
This has a large influence because today Apache is a real
brand. Nowadays you don’t have to explain to an IT manager
why it’s good or bad to use the Apache Web Server because
over 50% of all the websites are hosted with the Apache Web
Server. This confidence spills over to the other projects. Of
course it’s not sure that you can sell your project just because
of this but at least it’s a door opener, you don’t have to do
much selling any more. They still ask how many committers
do we have and if we will become a top level project. [...]
But with an Apache project you can make money because it
just sells better than others. [...]
What influence does a company have on its open source
project?
Lenya is quite neutral because it’s an Apache project. Of
course a lot of the committers are from our company so we
can influence the project that way. Take e.g., backwards
compatibility: If somebody breaks backwards compatibility
in a stable branch then all our customers won’t be happy any
more; and not only our customers but all the people who use
the software. I will think of all our customers who will need
an update so it’s bad for us and all other installations of the
CMS. And yet, I won’t go and say “We don’t do that.” It’s
the way of communication. We don’t say: “We are Wyona
and because we don’t want to have that we don’t do it.” You
can’t communicate like this, but you can say “I know cus-
tomers who will have a problem with this change.” And it
won’t be different with others.
Here you see the difference between “hobby” projects and
those that are used in a commercial area. You will have some
dependence on your customers and can’t just say we will
change the API like that. In software engineering it happens
that after a while you realize you should have done things
differently. If you are a single developer you can say , even if
others depend on it: “I don’t care, I want to do it my way!”
and restructure your entire API. But if you are in a commer-
cial environment where people build on top of your software
then you have to decide if you want that people continue to
build on your software or if you want to do your own project.
[...] There is still the possibility to create another branch. For
example with Lenya we did this, one branch which is back-
wards compatible and another where we try new things and
thus it isn’t backwards compatible.
What about release management?
We don’t really have a good release management. We don’t
have a release manager who really feels responsible for that
in general.
What means release management in your project?
To see that everybody keeps the code freeze and doesn’t
check in after this. [...] I believe it’s important to release fre-
quently, as Eric Raymond said. You shouldn’t always say:
“Oh let’s do this also and that and so on.” That way you nev-
er get to a release. Even if you fix something it’s possible to
have side effects, create a new bug and so on. So it’s better to
fix some things and then do a release. Then you see stuff that
doesn’t work so you fix it and release it again. Somebody
also proposed to do regular releases, for example every
month. I like this because it’s clear when you release.
And in what steps do you suggest to advance monthly?
[...] In 0.0.1 steps, like having Lenya 1.3.1, the next month
1.3.2 and so on. At the moment we only do maintenance re-
leases like bug fixing and so on. Sometimes we also transport

new functionality from the development branch to the stable
branch if it works well. [...]
When you started, was there another open source CMS
based on XML publishing?
No, only recently some new CMS have appeared, for ex-
ample Daisy and Hippo which are based on Cocoon. [...]
What documentation do you have?
We use JavaDoc to document the API.
How important is API documentation?
In a framework it’s very important because developers have
to know how to use the components.
Also there is documentation for the integrators, how to im-
plement the CMS and so on. End user documentation prac-
tically doesn’t exist - because Lenya is so easy to use. [...]
How about the community, does it participate in develop-
ment?
Yes, a lot. Unfortunately many things never get published in
the community. Sometimes I see that it’s just the top of an
iceberg that gets back to the project. For example just some
days ago somebody said something about DocBook so I
asked him what he did with it. He answered he had built sort
of a document management system for his company based on
Lenya.
How could you get these people to contribute their exten-
sions back to the project?
It’s difficult. You shouldn’t embrace people too much and in-
vite them too openly because they might be shocked and run
away and never show up again. Still I asked him if he would
like to check the code into the project and after a while he
answered yes, he could do that. [...]
What would I have to do to get commit access to your pro-
ject?
First you’d have to get onto the mailing list, ask questions,
fix bugs, contribute good code. All this for about one year or
so. The older a project becomes the longer it takes to get
commit access. On the other hand the mentality of the
Apache Foundation also has changed over the last years. If
somebody is around for about one year and regularly contrib-
utes something it’s ok. Actually there is practically no com-
mitter who harms a project. They are usually very careful
checking in code. In the worst case we can always rebuke the
people about their behaviour. We also have a commit mailing
list where we get an email whenever there is a commit.
Is there any structure inside the project community?
Not really. People just do what they like to and are able to do.
[...] There isn’t a code ownership either. In effect we try to
avoid this on purpose.
What is the consequence of code ownership?
You would become dependent on people. Code owners could
prohibit changes in their code. We want to be able to throw
out code if there is better one.
Are there any non-developers participating in the project?
Yes there are. One guy has a documentation commit access
and isn’t really a developer but rather a consultant. Others of
the University of Zürich comment as end users about usabil-
ity issues and things like that. [...] Also for example if there
are bugs they report that. [...]
Do you use IRC?
Yes, usually there are about five to ten people online there.
But I’m not a big friend of IRC. Generally I think IRC is a
good thing but the problem is that IRC is synchronous, not
asynchronous.
You could log it.
Yes but there would be too much nonsense on there. [...]
Also the advantage with email is you can answer questions or
remarks, in IRC the person might be not be there any more.
But IRC is very good e.g. for asking simple starter questions
which have been discussed already on the mailing list. It’s
also a good way to just feel the mood in the community. IRC
generates something like a community feeling.

Appendix Page 133

Do you have any fixed meetings on the chat?
No, people just log in and talk. There was a time when
people started to take decisions in the IRC. So I wrote a
couple of critical emails because I believe if decisions are
made in the IRC many others - who are not online or don’t
have time at this very moment - are excluded from the de-
cision making process. Of course it’s somewhat specific con-
sidering my personal habit of not being in the IRC often -
partly because it distracts me and I can’t work very well any
more. Others don’t have a problem with having the IRC open
and doing other stuff next to it.
Do you use any other communication channels?
Maybe Blogs. There is no Lenya Blog nor Planet Lenya.
Nevertheless I believe it would be good to have a Planet
Lenya, the aggregation of all Blogs that have the category
Lenya. For example Henry of Midgard, another open source
CMS, is very much convinced of that. He says since there is
Planet Midgard he doesn’t have to write many mailing list
emails any more because the essence is written down in the
Blogs. So there is for example some mail thread in the mail-
ing list and the final decision gets blogged by the members
like a resume.
So in summary I’d say IRC is for very quick and simple
questions and answers, the mailing list is to discuss issues in
detail with the entire community and the Blogs are in the end
the consolidation of all the discussions and decisions, which
are published. And the aggregated Blogs in the Planet XY
show the different opinions of the developers. [...]
Of course Blogs are not perfect. They are just the opinion of
one single person. You can comment on the Blog entries but
not everybody will see these comments.
Do you have any guidelines or behaviour codes for the
mailing list?
No, just the standard Apache mailing list guidelines. Com-
municating via the mailing list is an advantage for the effi-
ciency but it’s also good for the culture in the project. To be
friendly, and humble... Well, sometimes I think you still have
to say some harsh words if you are really annoyed. For ex-
ample recently somebody checked in code which he didn’t
test before. So I wrote a nasty comment because I had said it
politely many times before but nothing changed. I just think
one must not commit anything before testing it. Well, and
then I received many critical comments from all over the
place about giving a bad example, destroying community and
so on. OK, I will apologize for not saying it friendly enough
but the fact remains that nothing had changed before and I
got very angry about that. So I believe sometimes you’re al-
lowed to smash your fist on the table. [...] I think it’s also im-
portant to show ones feelings and not being humble all the
time. On the other hand “humble” might also mean
something different. Like not being all too self-confident and
not rejecting criticism. To ask for the opinion of others, to be
thankful for the work of others and also to praise them.
What other leadership skills are important for open source
project owners?

Besides some amount of this good humbleness it’s important
to communicate your vision clearly - and to give arguments
why you have this specific vision. For example explaining
why one believes a trend has arrived and how to react to that.
The other skill is to be able to let go and let others do the
work in their own way. [...] This is part of being open and
letting people come into the project.
And also the long term perspective is important. And to rep-
resent the values and culture of the community.
Nevertheless I believe in strong leadership. This doesn’t
mean shouting: “Shut up everybody, I’m talking.” This is a
misunderstanding of strong leadership. It means to be very
clear but still open for consensus, bring others to consensus,
and without compromise draw a line to those who aren’t will-
ing to. Because if we want to be such and such a community
everyone has to cooperate and if anyone doesn’t he’ll have to
leave. [...]
Do you have any physical meetings for Lenya only?
Yes, there was one about every year so far. It would be great
to have more of them.
What influence do they have?
They’re good to advance the project and let it run. They’re
motivating and giving an impulse for the community. On the
other hand there is also a threat. When you meet all those
people, spend time together and go out and so, then some
sort of an inner circle develops. So you have to be aware that
such an inner circle doesn’t start making decisions and fen-
cing off the outside. But I don’t think this is the case with
Lenya.
How do you mean this?
For example your boss likes to go out and drink so you join
him and slowly you become part of this inner circle. Another
guy who is really great, might not like to drink that much so
all of a sudden he is an outsider. It’s always the same thing.
In open source communities, too, there are people who are
more respected than others. Like in Animal Farm: “All anim-
als are equal but some are more equal.” So it’s important that
those people who have the power in the community take care
that this doesn’t happen. This is another aspect of that strong
leadership. [...]
So you’d say personal relationships are important?
Yes, not to say it’s good or not, it’s just a fact. As every-
where connections help. [...] At least, in a community the ef-
fect of such relations is much smaller than in a company. It’s
a vicious circle where only those who are stronger and have
connections rise up and not those who are actually better.
Maybe they’re just not good in developing these relations.
How would you define a good community?
One that is honestly friendly. Diversity helps to guarantee
stability by including different perspectives. And the com-
munity must be able to find consensus and at the same time
define priorities. And of course it should be able to create
something and not to get stuck in discussions and let the pro-
ject stand still. [...]

Interview with Daniel Hinderink, TYPO3 on December 3, 2004

What is your education and how did you get in contact with
TYPO3 in the first place?
I studied economics and political science and did postgradu-
ate studies in marketing at the London School of Economics.
For a long time I worked as project manager for different or-
ganisations specifically in the area of NGOs. I got into gener-
al contact with open source software because in my studies I
had to do some statistical work about currency exchange
rates. This involved enormous calculating power because the
exchange rates had to be calculated over several years minute
by minute. Therefore we worked in a computation centre in
Munich in a Unix environment. It was common to work with
LaTex and also with Linux, when available. So I grew into
this in a natural way. TYPO3 became a topic for me years

later because I had to manage a relaunch of a consumer’s in-
ternet website . They did most of their external communica-
tion with this channel and had several static platforms hosted
on one single system. They also had eight permanent authors
so it was quite a large project that could not continue with
static pages only. I had to propose a new solution on a certain
budget. It was big enough to accommodate mid-priced com-
mercial CMS . During my search for a CMS I came across
TYPO3. In many ways it was a completely different software
at that time compared to now.
When was this?
In fall2001. It looked quite different then, the user interface
was different from the one used today. The classic backend

Appendix Page 134

was much harder to use. Also the logo was another one and
the typo3.com was very difficult to navigate. [...]
When was it published for the first time?
In 2000, at about the time of Kasper’s wedding so it’s easy to
remember for him, sometime in the summer. It was already a
mature system, when I came along. So in the end I had made
a selection of three different CMS and presented them to the
customer. I had already done some tests with TYPO3 be-
cause I believed I should really know what it meant to imple-
ment it. Moreover, there was no local service provider for
TYPO3 at that time thqat could be hired. I worked together
with two freelancers from Munich who already had some ex-
perience with it. Finally we got started with the project.
That’s when I became infected with TYPO3. I realized the
amazing advantages of this system compared to the then
available commercial alternatives. I was generally convinced
that all new media projects should be implemented or mi-
grated to CMS’s as soon as possible. Having some years of
experience already I knew that large websites get out of con-
trol when they are built statically. I felt the demand for a new
design and TYPO3 seemed to be the best candidate.
Did you know of other open source CMS?
Yes, we had already used other ones, Contenido, Zope and
others. TYPO3 seemed to be the most flexible one with the
best user interface. Those were strong factors. Also customiz-
ing was possible.
How did you participate in the beginning?
First I sent an email to Kasper saying, that I was very inter-
ested in the project and had such and such an education with
this and this experience. I offered to write up the advantages
of the system from a newcomer’s perspective and also to
write sort of a starting tutorial. He reacted quite sceptically at
first and actually wasn’t very much interested in it. I was sort
of disappointed because I had thought by doing this I would
get his support. He supported me nevertheless but was not
very motivated about it. I kept on going and tried out things
on my own. The community, very small at that time, also
supported me a lot, which was very helpful. I liked the sys-
tem and its environment.
In the following year 2002 I was already involved a lot and
wanted to take an active part to find out where to go with
TYPO3 in the future. I participated in ongoing discussions,
especially the one about the introduction of a modular
concept.
Can you briefly describe the history of the project?
Kasper and a fellow student founded the internet start-up
company SuperFish in Copenhagen in about 1996. They de-
veloped good partnerships with marketing agencies and other
companies in Denmark. [...] After a while they began to real-
ize writing their own CMS would improve website creation.
So they started development in 1997. [...] Because of differ-
ent visions about the company Kasper and his partner split in
1999. Kasper took his software along and worked on TYPO3
for an entire year. Then in July 2000 he published the first
version 1.5.
Why right at that moment?
Maybe partly because of his wedding and to get it off his
chest after working alone for such a long time. And he prob-
ably just felt it was ready. He also published it also because
he’s a believing Christian and thought the software might be
useful to others. Doing it open source was some sort of self
expression. He didn’t expect much of it. But then others
came along and started to use TYPO3. Among the first ones
was Rene Fritz, one of co-authors of the TYPO3 book. The
first public release was TYPO3 1.5 and until release 2 you’ll
find some very interesting installation procedures which
needed some sportive ambitions to succeed.
How did he publish it in the beginning?
He opened up a new website and first announced it at
Hotscripts. It didn’t start like an explosion but grew continu-
ously. Only in the last two and a half years it did grow dra-
matically.
What was so special about TYPO3 then?

I believe it was the sophisticated user interface and the avail-
ability of a large range of functionality like a simple address
book and a small shopping system. There were about ten plu-
gins that came along with the system. Compared to other
PHP projects at that time the code quality was very high.
Maybe the worst example is PHPNuke which started out
small but many people joined and then lost control over qual-
ity. [...] TYPO3 was different because Kasper had already
prepared a lot before publishing it. It was much more com-
plete than other PHP projects. Kasper was actually rather a
designer than a programmer at SuperFish.
What is his education?
After school Kasper started to study electro technics but quit
after a while. [...] As mentioned before, with Superfish he
was originally in creation and only out of necessity got in-
volved with PHP. So all the visual things made a big differ-
ence to him, icons and so on. Very early there was Emile
from Holland who created these icons about in 2001.
What was the influence of a single person initialising the
open source project?
I believe there are more advantages than disadvantages to
this fact so far. Kasper earned lots of sympathy by not doing
business with TYPO3 for a long time. It psychologically
lowered the entry bar for participation with the project a lot.
My assumption is that community contributions are much
harder to get for a project where a company is doing business
with – just because people feel like helping the competitor or
supporting somebody who has business interests. In the case
of Kasper he as an individual still benefited from the success
but he also had invested a lot into it. There’s a much more
personal relationship to the project for everyone involved if
there is an individual programmer at the centre.
What does he live of today?
He has always made a living with customer projects. In addi-
tion there is a certain amount of donations, not much but at
least some. [...]
So back to the initial question of having a single person as an
originator. One advantage was this lower entry bar for the
community. Another one is the issue of quality assurance.
Kasper provided a very complete project – maybe this is also
one reason why no one ever had the intention to do a fork so
far. It wouldn’t be that smart anyway because there are lots of
extensions available today which would have to be made
compatible to a new system. [...]
Also it’s sort of a transparency advantage if there is only one
person responsible because in this way the project gets
something like a pivotal point. In a company it might not be
that transparent. [...] Personal wishes of the project owner
like “I always wanted the community to communicate in a
friendly tone.” also give continuity to the project. So it stays
more personal. The annual snowboard tour is another psy-
chological factor binding the community together, because.
it’s not just a conference, but a fun event. [...]
Of course the single person project does have disadvantages
as well. A major one is the non-scalability of Kasper – an ex-
pression adopted from the Linux kernel community “Linus
doesn’t scale.” The creation of the extension repository was
one attempt to decrease the importance of this problem so
Kasper can now concentrate on the central issues again. It
was successful although for example the typo3.org domain
and the documentation were things that Kasper initiated him-
self. It needs to be distributed more among different people.
One major effort to do so is the recent foundation of the TY-
PO3 Association with it’s residence in Switzerland. The idea
of this association is to distribute different tasks like quality
assurance of the extensions and the service providers.
So is there still some tendency to move from a single-person
project to an institution-based project?
Yes, in parts. Kasper will still be the head of this institution.
So what it will do is up to him and the others inside this or-
ganisation. From my point of view there was also some Glas-
nost idea behind it because transparency and openness are
also issues. The association is supposed to have a beneficiary
effect for everybody. It won’t go into competition with the

Appendix Page 135

agencies and offering service to customers – only to com-
munity members. [...]
Are there certain properties of TYPO3 which had to be
thought of at the point of initialisation and can’t be changed
any more?
If you initialize an open source project today – like Magnolia
– the initiators and also the developer community have more
experience in what communities may look like and how com-
munication might work.
One important thing in the beginning is to think about what
license to take. It’s not good to do that in a haste. You have
to consider precisely what kind of contribution shall come
from the community, where do I want to be able to control
things and where shall the forces play freely. A license can
partly communicate and organize this. You can write your
own or you can take an existing one certified by the FSF. The
licenses organize at different levels. For example the GPL
controls only few things so there must be other instruments
installed to enable collaboration. All the marketing advant-
ages of open source software also have their price. The
widely distributed development bears the risk that contribu-
tions can’t be put together again or that powers fritter away.
So it’s important to think about collaboration and control –
which in the end is the construction plan of a community.
The problem is once you’ve decided e.g. for the GPL and
later you change to something like the Zope License, many
community members might get angry about it and feel ex-
ploited by the central company. There are implications for
your business model. If you publish under GPL, a community
will be likely to build up that helps on many different levels
and control is only possible as quality assurance and con-
sequently your business opportunities will be much narrower.
Basically there remains the possibility to offer the traditional
services like documentation, education and so on.
Most other things can still be changed quite easily later on.
Marketing for example is about the same as in every other
project. It’s good to have it done well, but in the end it’s the
product quality that counts. [...]
One other thing that should be thought of in the beginning is
the basic API. I don’t know of projects that didn’t loose
people when they did major changes in the API. For example
imagemagick is such an example. It’s a great software but the
history of the interface is weird so they’ve got a bad reputa-
tion from that. [...]
What’s the license of TYPO3?
GPL.
What are the typical properties of TYPO3? Could you also
comment on the programming language PHP, please.
The graphical user interface is one of the features that users
like most about TYPO3. Authors, e.g. have the possibility to
edit texts inside the front end, so-called “edit while you surf.”
In addition the precisely configurable user interface of the
back end is very popular with customers as it saves time and
money when training editors and authors alike. And last but
not least the broad availability of functionality is a good ar-
gument for TYPO3. Many of the extensions are of very good
quality and ready for production – because they weren’t de-
veloped based on guesses what the users might need but were
created based on customer demands. Development is quite
easy, mostly because it’s in PHP and the extension manager
enables a simple and efficient handling of the extensions.
What do you think is the influence of this extension manager
for community building?
I believe it’s the central factor. Being able to add new func-
tionality at this level without touching the core and also mak-
ing deploymentvery easily – with the help of the kickstarter –
is very unique. For developers and agencies the most effi-
cient way of customizing is actually the only possibility to
distinguish themselves because many service providers offer
TYPO3 today.
What are the other properties of TYPO3 that promote com-
munity building?
The thorough documentation of the core API and of the dif-
ferent kinds of extending possibilities of TYPO3 had several

impacts. This was important for community building.
Dominic Brander presented a nice diagram in Zürich (at the
Open Source Content Management Association – OSCOM
Conference 2004) showing the workflow for testing your
plug-in inside the system. It’s a complete IDE (Integrated De-
velopment Environment) that also influences project commu-
nication.
People work with TYPO3 in many different ways. There are
designers who create the templates, developers who write Ty-
poScript only or some newbies who just do a mapping based
on HTML pages. This is a good platform for people with dif-
ferent working methods. TYPO3 can be used in many differ-
ent ways. Some use it for creating a pre-press system, others
manage the website of their organisation. This variety of
complexity is very important for the community.
How is development organized?
It’s not very formalized. It basically runs like that: Kasper
works on all issues only he can implement because they in-
volve core technology. Extensions very close to the kernel are
mostly realized by people in the the sphere around Kasper.
For example the workflow system is done by Christian Jul
Jensen, a close friend of Kasper. There are others who offered
to help, for example Martin Kutschker who wanted to take
care of the typing system, especially UTF-8-compatibility
throughout. He got active in several discussions on the de-
veloper list and proposed solutions. So Kasper showed him
the classes involved and allowed him to take over.
So there is a certain kind of specialisation?
Yes, it works like that. Nobody does everything. Actually the
only one who is active in all the parts is Kasper. All the oth-
ers have found a certain topic and care about that.
How much of the current code of TYPO3 has been written
by Kasper?
Difficult to say. Concerning the core I’d estimate at least
90%.
Who has commit access?
Only few people can commit. There are two who are respons-
ible for the release management, Michael Stucki from Basel
and Ingmar Schlecht from Hamburg. One of them cares
about the Linux distribution and the other one about the
Windows stuff. When they receive bug reports by the bug
tracker they follow a specific workflow. First they estimate
the impact of the problem, whether Kasper has to take a look
at it or if it’s just a minor issue. Then a solution is proposed
and if it works they can commit the bug-fix themselves.
There is also a second SourceForge project.
What do you mean by this?
There are two SourceForge projects about TYPO3.
Do you also do CVS with SourceForge?
Yes. In the second project some parts have been outsourced,
e.g. the Database Abstraction Layer, DBAL and other things.
These are extensions with a large impact onto the system,
having large consequences for it. And there is a maintainer
for each of these areas. So the core and these major projects
have been split up into two SourceForge accounts.
Do you intend to publish the entire TYPO3 in this project
again?
No, just the extensions. Depending on the kind of extension.
For example the DAM, the Digital Asset Management, is
published in the extension repository only. It consists of dif-
ferent extensions and one of them also replaces some of the
core classes. It’s created by Rene Fritz, the first one who star-
ted to work on the core after Kasper, so he has some credits
for doing such central things.
So if I’d like to do core development, how could I get com-
mit access?
There is a very concise description on the Apache Software
Foundation website concerning meritocracy. The same holds
true for TYPO3. There is still quite some social mobility in-
side the community. It’s not an old boy’s club, many people
joined only recently but already have considerable of author-
ity concerning the project. All entered about the same way:

Appendix Page 136

They proposed improvements and realized them – so they all
convinced the people who came and contributed before them
by their achievements. One can’t expect Kasper to grant ac-
cess to someone just because he’s asking for it, jeopardizing
the entire quality. If somebody makes a proposal, demon-
strates how it works and what the advantages are,and he is
likely, if his solution is logical and fits the overall plan, that
he’ll get access if he is doing so continuously. Nevertheless,
the overall control over the project will remain with Kasper.
How can I program an extension and check it into the re-
pository?
That’s no problem at all. Download TYPO3, select the exten-
sion manager in the backend, click onto the option “Make
new extension” and then code your new extension. When
you’re done, you can register at typo.org to get an extension
key. Then you’re able to upload your personal extension into
the TYPO3 extension repository. There is no restriction for
publication at all, the only limit is the size of the file and
even this you can override by asking Kasper or Robert
Lemke, responsible for typo3.org, to increase the limit of
your extension. So the hurdle is very low, everyone can parti-
cipate. And you can actually do almost anything. Like ex-
tending core classes or overwriting functionalities. The only
difference is it’s done on a higher level so nothing will be
gone or can be destroyed in the core.
What is the influence of this concerning continuous develop-
ment?
I’m sure that if for some reason Kasper wouldn’t be able to
do something really necessary in the core somebody will do it
as an extension. The advantage is something can be done
very quickly. Of course that’s not always good since re-
sources might get lost or because people don’t want to dis-
cuss or stay with the half finished solution. But for customer
projects and short term solutions it’s ideal to work like that.
There’s an issue about collaboration. For example if you see
how many new extensions there are and how small their dif-
ferences are you can see how important collaboration actu-
ally would be. Not to program five weak ones but to do a
single one and plan and discuss what it’s features shall be.
It’s something that has to be improved.
I thought this would be a danger of the extension repository
but I’ve realized there is some regulatory system. The prob-
lem was recognized by the community itself and so collabor-
ation on this issue started. I would not say it works perfectly
all the time but in some cases it does. For example agencies
who do professional work for TYPO3 are interested in col-
laboration because it’s a serious business for them. It will im-
prove, the quality isn’t as good as it could be but it will be
better in the future at least in the basic technologies where
companies can’t differentiate. Of course there are problems;
collaboration is always difficult, especially if you don’t know
the others personally. So such an extension repository gets
spammed. For example recently I saw somebody who definit-
ively meant to do good when he took about ten extensions,
modified them minimally, changed their names and icons
and committed them again. So these ten extensions weren’t
necessary, it was rather a finger practice which should not
have been published.
These are issues a community has to solve. One reaction is
the planned extension review process. There shall be a group
of people who’ll do a review with strong criteria and rate the
extensions. Additionally there will be a user rating so there
are two complementary elements which together form some
sort of a quality seal. That’s the response to the problem we
have thought up at present. But it’s not easy to implement
because highly qualified programmers are necessary for the
rating and these guys usually have better things to do than re-
viewing other peoples’ code.
What kind of documentation do you have and what is it’s in-
fluence concerning community building?
Documentation was an important topic from the beginning.
Kasper invested a lot of his time into documentation which is
definitely unusual for a developer. Whenever he published
something new he included a documentation. So there is a
reference manual and various different tutorials which be-

came larger with time. There is a starter tutorial and others
about template programming. And there is an “Inside TY-
PO3” document which describes how the API works.
Who wrote them?
All I mentioned so far have been written by Kasper. There is
also a tutorial by Kasper and Robert Lemke about content
typing. Of the references the TypoScript Reference TSRef is
the most important one. It lists all the keywords of the script-
ing language. This has always been a core document from
which a lot of information could be extracted. So on typo-
3.org there is a documentation repository with all the files,
maybe a couple of hundred. There are not only those by
Kasper but also by other people, mostly extension de-
velopers. You can and should deliver a documentation with
each extension based upon an OpenOffice template. These
are uploaded into the repository and transformed into HTML
for display and thus a small manual website is created. Addi-
tionally the page can be viewed as PDF or again as an
OpenOffice document.
The documentation always had a large impact on community
building. TYPO3 has documentation above average concern-
ing the sheer number of documents. And there was always
lots of discussion about the quality. I believe it’s quite high
although there isn’t a guide or a document with a general
overview of all the components so far. So far two books have
been published and two more will appear in the beginning of
next year. And I believe there will be more in the next years
because there is no publisher who doesn’t want to have a
book about TYPO3. We actually get mails from publishers
who offer this to us – even we as authors are asked if we did-
n’t want to write another book for another publisher. The one
we wrote is surprisingly quite successful. The feedback of the
community and agencies is generally positive and they also
believe it helps the project. And it’s good because this was
the reason we did it – since you don’t earn money with that.
Next to books there is also something else which is very
valuable we have: videos. There are lots of them created by
Kasper and others. And they are useful indeed. If you don’t
get it by watching a video, you’ll probably never get it.
I just looked into the documentation repository: there are
about 381 files totalling 4186 pages – so that’s quite a lot.
What would you say is the most important kind of document-
ation for a starting project?
The installation manual. There is no more important docu-
ment and there are always lots of questions about it. Con-
cerning documentation I believe you have to take it really
serious as an important task. You shouldn’t think the mailing
list archive is enough. The knowledge in there must be trans-
ferred into FAQs, must be rephrased and made searchable.
Then you see the weaknesses of your documentation. And
you must be aware, even in a project like TYPO3 that has an
enormous amount of documentation, of the questions are still
asked. So you have to think about what you did wrong and
correct these issues. We found out it was probably a bad idea
not to create, say four main documents, each of them cover-
ing one perspective. One would be the installation manual,
another one about template programming, thirdly one about
administration and configuration, a fourth one about exten-
sion programming and maybe a few more. So for every im-
portant area there should be one central document. We
should have done this in advance, thinking about what parts
of knowledge are necessary to work with TYPO3, making
one single document for each, and that’s it. Intead we had a
proliferating number of documents All the tutorials and ex-
tras can’t replace a manual, it’s just something different.
What is the influence of the type of open source license on
community building?
I can’t really judge it from a birds eye perspective. I always
thought it has consequences if somebody chooses the GPL
compared to somebody writing his own license. Users would
think there must be something strange about the project if it
has its own license. But I think I was wrong. Most people ac-
tually using open source software are developers so they just
get the code of the software and that’s it. They don’t care at
all what’s written in the licenses. There are cases where the

Appendix Page 137

license is very restrictive but these usually aren’t real open
source licenses either. Jahia is such an example. I believe if
you use it commercially then a licensing fee has to be paid. I
wouldn’t call that an open source license because it’s a han-
dicap for distribution, no doubt. But with GPL it doesn’t
matter. Everybody knows it. If you take an Apache license or
write your own one like Zope or Apple doesn’t have a large
effect on the spreading of the software. I always thought it
would be different but I can’t see the effect now.
For every license there are questions. Strangely we get a lot
of questions about the GPL and discussions. Once we tried to
answer them with the help of an IP lawyer’s office in Munich
who gave a lot of responses. But this really had the opposite
effect because afterwards there were even more questions
about legal issues. It’s just difficult for most of the people to
think in these juridical terms – which is just normal. But also
if you look at the GPL closely there are a lot of relations to
other legal terms like the copyright protection which of
course is still intact. A license can’t omit all the other law
constructs saying “With open source you can do what you
want.” So there are always questions about details. I get at
least two of such questions a day like “May I delete the name
of TYPO3?” Or “somebody installed TYPO3 and deleted the
copyright note in the login screen. Is this allowed?” We once
had a discussion with Alain Cox and he asked Richard Stall-
man. In one point the GPL is somewhat misleading. So Alain
Cox asked Richard Stallman and they had to admit to be a bit
clearer in version 3 of the GPL. “We actually didn’t think of
web applications.”
These are points where you leave the developers corner and
get into legal issues. That’s difficult because there are also
different geographical areas with different juridical environ-
ments. For example in Germany the regulatory frameworks
are simply different from those in the USA or other coun-
tries. These are all topics you have to be aware of. It’s not
just done saying “I’ll put a GPL sticker on it and then you
can do what you want.” I believe it’s good to look at other li-
censes, even self-written ones – even if in some case the FSF
(Free Software Foundation) doesn’t accept the license. But
when it comes to the acceptance of your software, in the end
people don’t care much about the FSF. They just get the soft-
ware no matter under what open source license.
What kind of organisational entities do you have and what
influence do they have concerning community building?
There were a lot of attempts at organising the community.
Once it was tried to build teams for all different topics. And
we must admit this failed miserably. Many people reported
for the positions but in the end they didn’t have the time to
adopt the topics . The only thing that really exists is some
loosely defined entourage of people around Kasper. Depend-
ing how tight you draw the circle there are more or less
people inside. Looking at the intensity of communication
there are about four or five persons including Kasper and me.
It’s going to change now somewhat because of the founding
of the TYPO3 Association. By defining responsibilities it
gets clearer. Also project groups with certain tasks will be
formed. Nevertheless, just by formalizing things it’s not
guaranteed that everything will work. The main problem re-
mains: people have to invest time. So one of the ideas of the
association is to pay for certain work where no volunteers
can be found.
What’s the main idea of the association?
The main idea is to raise money to pay the core developers of
TYPO3 to continue their work independently of actual client
projects of their own. So to contribute something you just be-
come a member of the association and pay your annual fee.
Membership is possible for individuals and companies. [...]
What’s the right moment to found such an organisation?
I don’t know. It’s actually too early to say for TYPO3 be-
cause it’s not yet founded so I don’t know the consequences
yet. I believe we could and should have founded it earlier –
but this I’m saying because I hope the association will solve
certain problems. So if time shows I’m wrong my answer is
no longer valid.

Are there other problems to solve?
As I said one issue is “Glasnost.” It shall make structures
more transparent, for example how we decide about the pri-
ority of projects. We only have one Kasper and one Jule so
on what project shall they work on first? Such things will be
discussed openly in a group of well-known people and they
will also decide about it. In this way everybody benefits be-
cause it’s better than to decide about such things on a secret
mailing list as it happens at the moment. We don’t have any
advantages from organising these things in a small circle of
people. The opposite is true: If people know what’s going on
and what issues are discussed they can see where they want
to participate.
Do you also see any risks in founding such an institution?
If you do such a thing there will always be criticism. People
might say such an organisation just consumes resources and
produces overhead – writing a protocol instead of coding.
Another topic of criticism might be the existence of a head of
board. Maybe that’s just too formal for some. On the other
hand there will be the possibility of election for the first time;
that’s an advantage. I believe it’s good to have some demo-
cratic principles and to receive confirmation for one’s work,
to see if what I’m doing is good or not. [...] Also it wouldn’t
be easy to disband the association. Because once you have
100 members but you realize you can’t do with the associ-
ation what you wanted to achieve, it gets difficult to close the
association again when its members are very happy about it.
Concerning the organisational structure of an open source
project, what points of coordination are really important to
have?
I believe it’s important to have somebody who thinks and
communicates orderly, somebody who thinks in advance
what the website needs – because this is somewhat the heart
of the community. What information do I need to communic-
ate to the community? And it’s important to take this really
seriously. Looking at a project like Bricolage the guy is doing
this really well. Although I don’t participate in the project I
see the guy – it’s more or less a one man show – always
makes a release and writes an email when he does anything
new. He’s doing this consequently and brings it to a point,
just writing what’s new and what are the tasks. I believe it’s
enormously important to take communication really seri-
ously. So if somebody as a developer is not able to do this –
which is absolutely ok – he must find somebody who can do
this and also likes to do it. Otherwise the whole thing doesn’t
serve much, it just stays on the technical level and doesn’t
get distributed. Neither will there be professionalising con-
cerning building a community which helps and works togeth-
er. The less information you make available in a bundled
form the less people will be able to collaborate.
What is the role of the release manager in this context?
It’s extremely important concerning quality assurance. It
doesn’t work without him. Everybody could just publish
something that doesn’t work. [...] You only realize the ad-
vantage of an open source system when all the bug fixing and
other contributions of the community gets integrated.
What are the tasks of the release management?
Quality assurance, communicating what’s new and mainten-
ance of the change log.
Do you have an explicit credit system?
No.
How does the community communicate?
We use mailing lists which at the same time are news groups,
too. There are lots of them and there’s also a lot of traffic – I
believe over one million emails a month. Most of the readers
aren’t subscribers but just go to the news groups. There are
two main mailing lists, the English mailing list and the de-
velopers’ mailing list. Additionally there are installation,
marketing and user groups’ mailing lists – all countries and
many cities have their own . [...] Everything that has some
significance will go via the developers’ mailing list. First aid
and political matters are discussed in the English mailing list,
for example questions about licensing. There is a German list

Appendix Page 138

but it’s not an official one. And there is also an announce-
ment list where a few persons – Kasper, the two release man-
agers and I – can send news. I send announcements about
new versions, press releases and so on. The release managers
only do the bug fixing announcements. Once there was a
community newsletter but unfortunately the editorial team
did not get integrated well enough. we’ll have to see if it gets
revived. I think once the association is created there will be
new reporting duties introduced. Then there are some very
specific mailing lists, for example the founders of the associ-
ation use a closed one.
Do you have physical meetings?
Yes of course. First there are small events for the people
around Kasper, about once a year. This year we were only six
persons when we met in Lüneburg. Last year there was a lar-
ger meeting because of a specific task. It’s not a public meet-
ing, people get invited.
And then there is the snowboard tour. Also there will be the
first conference next year. We don’t know yet when, either
May or September. It’s in Karlsruhe, the first international
TYPO3 conference!
What do you expect from this event?
We hope to relieve the snowboard tour. The need for a con-
ference grew a lot because of the success of the project. So
many people come to the snowboard tour hoping to find a
conference which is not possible to offer.
What were the consequences of the first snowboard tour?
The greatest effect, as Kaspers says, is “adding faces to
emails.” A new level of trust arises between people who pre-
viously met only on the mailing list. After these snowboard
tours new projects get started and collaboration as a whole is
better. For example on the last snowboard tour there was the
discussion about translating the typo3.com website into Ger-
man. The issue showed up again in the marketing mailing list
so an agency in Berlin called about 20 other agencies and
collected between 100-300 euros from each of them. Thus
they could pay a translator and the site got translated very
quickly. There were long discussions before but nothing had
changed.
There is a difference if you met once and drank a beer to-
gether. It’s just easier to team up .
Do you also see some disadvantages of such meetings?
No, I don’t think so. [...]
How about infrastructure? You have a website and you use
CVS from SourceForge. Where do you host the website?
There was always a company, Netfielders at Düsseldorf
which hosted the websites and mailing lists. Then there is a
danish company (sunsite.dk) and SourceForge for down-
loads.
What are the advantages and disadvantages of a platform
like SourceForge?
Well there is a lot of competition. There are also Tigris and
others. The main disadvantage of SourceForge is its slowness
and the lack of customization. It still covers a lot of the needs
and also many people search there for a system. [...]
What is the definition of a healthy community?
I think the tone is very important. There must be people
around who take care of the way how people deal with each
other. Communication has to stay factual, with humour but
not too much. People have to follow the rules like first using
the FAQ and searching for an answer in the mailing list
archives. Since the community is mostly defined by the mail-
ing list the things important for mailing lists are also import-
ant for a healthy community.
It’s also important to raise the level of communication on the
mailing list so it gets interesting for people with lots of
knowledge to contribute. [...]
Where did the community, excluding Kasper, contribute
most to the project?
Definitely in the extensions. There were some donations but
most of the activity is in the extension area. Maybe we don’t
communicate clearly enough how to participate or the tasks

are too big.
Do you use a task or todo list?
Yes. And people actually sign up for certain tasks so they get
the information where to start. Sometimes they do it, some-
times they don’t. Mostly it’s done out of a mood. Somebody
likes the system and wants to contribute something but in the
end it gets drowned in the daily business.
As founder of a community you have to protect yourself. If
you count on people’s contributions and thankfulness you’ll
fail for sure. You have to do an open source project for your-
self, not counting on outside rewards. If there are acknow-
ledgements that’s nice, but you shouldn’t be depending on
them.
Where can non-developers contribute?
The most important task is communication. There is always a
need to write texts, to order existing resources, do ratings and
so on. Working on the website typo3.org for the developers
or typo3.com for business people, for example examining
mailing lists and extracting FAQs out of them or ordering the
documentation and eliminating errors. Such a project con-
sists largely of communication so everybody can contribute.
What characteristics do such people have to have?
To work independently is almost the most important capabil-
ity such people need to have. You don’t sit together in an of-
fice and usually you can’t meet; so people have to be able to
work on their own. [...] Kasper calls this “self-starting fire-
works”: somebody makes a proposal, writes down the details
and is still open for criticism. Others look at the draft, pro-
pose improvements and the initiator implements them or de-
fends his own propositions. In the end he has to be motivated
to do everything all by himself without expecting Kasper to
be extremely thankful or some other positive attention of the
community.
What are the leadership skills of Kasper which made the
community grow so big?
I think it’s not really leadership which caused it to grow so
big. From my perspective Kasper has two extraordinary
skills. The first one is the impressive ability to concentrate.
You can discuss with Kasper from eight o’clock in the morn-
ing until ten o’clock in the evening without getting the im-
pression of him getting tired. [...] Thus he produces things
above the average and with consequences. So maybe some-
body proposes something, Kasper works on it in silence for
weeks and then shows up with a result anyone else would
have produced in no less than three months. I believe this is
the secret of his success.
So it’s not his way of communication?
No, it’s mainly his work. It’s the same in about every open
source project. If the product is not good, you can commu-
nicate as much as you want, it doesn’t help. Of course both
must be present. If you want to grow you have to communic-
ate well. But you can’t sell bad stuff.
Are there people you don’t want to have in the community?
Yes, there are always such people. It’s almost the nature of
an open source project to attract freeriders. There are many
people who use it, earn money with it but don’t contribute
anything. That’s usually also the majority. And there are
times when you get frustrated about this fact. It’s especially
not funny when the other one acts relatively aggressively. For
example an agency realizes a lot of projects with TYPO3 and
creates new functionality along with them. And still after get-
ting the investment back they are not willing to publish the
additional code e.g. as an extension. [...] There are a lot of
agencies who save hundreds of thousands on licensing fees
but still don’t donate anything. In some respect I also think
that’s just stupid. The involvement in such a system is also
some sort of long term egotism. You want the project to go
on existing so it’s very stupid not to do anything for it.
Everybody can say “I know TYPO3 and offer services for it.”
because there is no control about it. For example at a booth at
the SYSTEMS trade fair somebody once came and told us
they were looking for an agency to implement TYPO3 for
them. Only the third one they contracted could meet their ex-

Appendix Page 139

pectations although all of them claimed to be working with
TYPO3. These are things that a community has to organize.
Others have installed such a control of service quality from
the beginning.
Where do you see entry barriers to TYPO3 today?
You have to get into it quite deeply because a lot is available
already. I believe it’s much easier to get into a project where
not much has happened so far. There are still things to do on
a relatively low level. It’s different in TYPO3. Probably no
matter what you want to do there are always at least attempts
or beginnings to solve the same problem by others. It’s really
difficult to have a new idea. So if you have a new idea that’s
great, but if not, you need to at least look at the existing at-
tempts and work with them. So participation needs more.
Concerning marketing: How do people find the project?
TYPO3 is quite well represented in the press. Then it’s
present in all kinds of directories like SourceForge,
Hotscripts, CMS Matrix of OSCOM and so on. These play
important roles. But the major part is probably done by the
agencies doing marketing in search of new customers. I think
that’s the marketing channel number one.
How can new projects make themselves known?
There are always these show case events like LinuxTag or
LOTS in Switzerland. These things are always very valuable.
Also it’s great if you get onto one of the magazine CD-ROMs
of c’t or something like that. It’s always good to do press re-
lated work. I don’t know how important such directories are
to start. I believe it usually goes via magazines and events.
What’s the vision of your project? How can it still evolve?
That’s difficult to say. I think there are about as many visions
as there are community members and also the expectations
are different. So I can only talk for myself, butI believe I
know approximately what Kasper wishes.
What does he wish?
He wishes money and autonomy to concentrate on develop-
ment. But Kasper also wants to keep his way of working, es-
pecially this intuitive and creative part. He’s not an engineer
who first makes exact plans and then builds everything ac-
cording to them. He’s really creative, thinks about an issue
and then gets into some flush of work. This is something that
has to be protected. I look at it as a challenge for the com-
munity to preserve an environment where TYPO3 keeps the
continuity of development and also uses and protects the tal-
ents of Kasper. These are the things that have to be synchron-
ized – and it’s not very easy. The community has to offer a
nutritive soil for this. [...]
On the technical side TYPO3 has to agree to standards better.
And maybe one day the project can even define a standard.
Let’s say for example the extension repository where the core

of TYPO3 itself is already an extension. Commercial vendors
of CMS say the standard functionality of such systems will
some day just follow a standard based on some open source
software. So it would be great if this compatibility would be
drawn much further, for example if TYPO3 would support
the JSR-170 standard. On the other hand it might support the
Portlet standard on the frontend side. There the ideas and
concept in TYPO3 are about on the same level as other
known CMS so it’s a large potential for TYPO3 as for other
CMS for optimization. In maybe five years the intelligence
might go way beyond today’s CMS. [...]
What made TYPO3 so successful and is also true for other
open source projects?
A good product. A consequent and serious communication
on the level of marketing, documentation and coordination.
[...] I know of other people in other communities who looked
specifically at the extension system and wanted to copy it.
Other things they didn’t intend to copy. I don’t think when
Kasper created TYPO3 he imagined what has come out in
the end. He just didn’t dare thinking of such a big success.
Maybe this was a mistake. Maybe if you’re doing such a pro-
ject you sometimes have to indulge in the luxury of imagin-
ing what the end should look like if the project is successful.
What are the do’s and don’ts for project managers like you
and Kasper?
You have to obey some rules you set yourself. At least this is
what Kasper is doing. There is Kasper’s ideal of “complete-
ness.” He doesn’t just throw something at the world. He de-
velops something, writes documentation and does lots of oth-
er things and only when all the dimensions of the package are
covered and it can be presented, he actually publishes it. I be-
lieve this is extremely important. This is what makes frame-
works t doomed so often. As Patrice Bertrand said at
OSCOM, frameworks actually are almost always the con-
sequence of the developer not daring to say what the users
actually wanted. So this way of completing things, offering
quality on all levels is important to do and maintain to create
some stability in the spirit of a community.
An important don’t is not to take things too personally. You
can follow a personal style like being friendly and polite. But
if things are growing it’s rather a handicap if there are family
pictures on the website. It’s especially an issue for individu-
als.
Another do: If you want to use open source as a vehicle to
make money you have to state this clearly. You have to say
exactly whereby and how you want to earn money. In areas
where this is not the case and you intend to work together
and build a community you also have to communicate this
clearly. It’s commercial where it is labelled and non-commer-
cial where it is not. If you mix these up you’ll lose credibility
and respect.

Interview with Bård Farstad, eZ publish, on 3 December, 2004

First I’d like to ask you about yourself; what is your educa-
tion, how you got to eZ publish and what’s your function
there right now.
I have a degree in software engineering. Actually while we
were studying we started a company, me, my brother and a
friend of mine. So we started in 1999. That was actually my
first job. My role is software developer and I’m one of the
main designers behind eZ publish, me and Amos. I also led
development of eZ publish for the past five years. Now I’ve
got another job: I’m in charge of the open source relations as
we call it. So I’m working a lot now with the community and
basically getting the message out to the people.
Can you tell something about the history of the project?
We started in 1999 and eZ publish started just around then. I
was very interested in web development and Amos was inter-
ested in GUI development. We did C++ GUI applications in
QT; that’s what we actually started out with. But we got a
customer for a web project in the early days and we thought

that this was a lot of fun. So we decided to build a CMS and
do it open source. From the beginning we have programmed
eZ publish as a general CMS, not for one customer only but
as general as possible. The first version was more of a CMS
to publish articles, products and so on. But it was kind of
hard to customize. So in 2001 or 2002 we started the rewrit-
ing process. When we started eZ publish 3 we dumped all the
code - about 200’000 lines of PHP code we just flushed
down the drain. We started the project from scratch again
with a different goal. We wanted to make a web application
framework to produce general web applications and we
wanted to have the CMS on top of that. That is the eZ pub-
lish 3 series you have today. It is now in version 3.5 and in
terms of numbers it has been downloaded more than 1.1 mil-
lion times from our website. Of course it has been distributed
on other sites and on CD-ROM. At least this are the numbers
we have.
Actually it has been two projects: eZ publish 1 and 2 are the
first generation, and then eZ publish 3 is the second genera-

Appendix Page 140

tion which is much more general. It’s an application develop-
ment framework for web applications.
How did the community evolve?
We had quite a good feedback from the community all the
time. A bit special about the eZ publish community is that
we have a very professional community. You don’t find this
in many other projects. When you go to our forums you’ll see
most of the users actually are working in companies doing eZ
publish. They base all their living on customizing, installing
and integrating eZ publish for their customers. We have a
large community but it is also a very professional com-
munity. It is not so much one person just doing it in his spare
time, it’s rather companies that are involved in our com-
munity. That’s quite different from other communities.
What was the reason you published it under an open source
license?
When we started the company we didn’t know what products
we were going to make. We had the philosophy that the soft-
ware we make should be open and it should be easy and it
should be stable. With open we mean follow open standards
if they existed. We use open source. That has been one of the
main corner stones of our company since we started so it was
totally natural to go open source. That was kind of the busi-
ness we are in. We didn’t know that we’re going to do a
CMS.
How did you publish it?
We started out a bit like any other project. We also had a
page on Sourceforge but that hasn’t been maintained for
many years. It started out on Freshmeat and some other sites.
One of the first sites we also published it was Hotscripts. If
you go there and look at the rating system... There are about
20’000 projects on Hotscripts. For about the last three or four
years eZ publish has been the most popular project, the most
viewed, the most downloaded and the most clicked on. That
has been one of the channels where we became known. I
think they were Freshmeat, Hotscripts and some other smal-
ler site.
What’s the relevance of these platforms concerning com-
munity building?
I don’t think it has too much to do with community building.
They help with marketing and make announcements about
new releases. But the community comes from other things
like the forum and comments on articles and so on. That’s
where you create a community. Also we have a conference
every year so I actually meet people in real life. That’s were
the community is, at least the hard core.
The whole point of those channels is to get the word out. [...]
Freshmeat is not very specific, the users there are not looking
specifically for web applications, especially not CMS. If you
have more targeted sites like for example Hotscripts then you
reach the audience in a better way. [...]
What are the advantages and disadvantages that your pro-
ject was initiated by a company?
The advantage is you get consistency. People are dedicated
for development over time. You are working towards a goal
and you work very focussed on that goal. That is the main
advantage for a user. Also if a company is behind the project
you get the possibility of getting the professional services
and support you need, especially if you base your business on
this solution. And you get the comfort to know in a month
there will be a new release containing those features. You
know what’s going on. If there isn’t a company behind it
things are only accomplished if somebody wants to have
them done, otherwise they don’t get done. That’s the philo-
sophy behind most of the open source projects. So if you do
it, it gets done, if you don’t do it, it doesn’t get done.
So users can tell you what they want and you develop it?
Yes, basically. Of course you can’t send an email saying we
want this system and expect us to make it. But what we do
before every release we ask what are the features you’d like
to see in the next version, what are the things we should work
on. We take all that feedback and we see what are the most
requested features. We do that in more detail every year at

the conference. There we discuss the next releases and what
we should work on. Specifically, what are solutions we could
implement, and so on. That is the real power of the com-
munity because you get so much feedback on things you
could do. If there is a bug they’ll let you know immediately.
Disadvantages for a company I don’t know. It must be that a
company needs to make money for a living, of course. But I
don’t necessarily see that as a disadvantage. It just means
there are professional options available. It is open source so
you have the freedom of choice.
Concerning community building is there a difference if a de-
veloper sees a CMS from a company compared to a CMS
from an individual programmer?
I think we and MySQL are about in the same situation be-
cause we have the full copyright of the software. As an ex-
ternal developer you can’t say I want to join the project and
change this and that, because we do have all the copyright,
because we have the dual licensing policy. This can be a dis-
advantage. Still we have external developers working on eZ
publish as well but then they have to give the copyright to us.
So to address that problem we have made eZ publish to be a
framework. So it is designed to be extended. Normally you
can just write an extension or a plug-in or a module that
solves your problem. That’s what third party developers
mostly work on. Of course it is not exactly the same as a tra-
ditional pure open source project since we have full control
over the software, all the commits and so on.
Concerning initialisation again: What can still be changed
in the project and what can’t?
We can change anything we want. We are in a position to do
that. We have already done it once, from version 2 to version
3 we changed everything and actually just kept the name. [...]
Usually we just improve things. We have issues and we work
on them for say the next four months. [...]
Which technical characteristics promote community build-
ing?
As I mentioned the plug-ins and the extension system are of
course part of it. In about 20 or 30 lines of PHP code you
have an extension to eZ publish like for example a template
operator or a small module. This promotes third-party in-
volvement in the community. [...]
What’s the influence of the programming language?
We chose to use PHP. It is a language which is very simple to
use and the learning curve of PHP is quite low. Also looking
at the worldwide hosting providers it’s the most used lan-
guage as well. As far as I know it is the most used program-
ming language for web applications. That’s good because it
means you have a lot of potential users and contributors for
your community. If we had used another programming lan-
guage which is more obscure, harder to learn and not so
widespread, that would have changed the whole potential for
the user base. So PHP is a very good language for this pur-
pose, at least this is our experience.
Do you know of any other factors concerning the software
which promote community building?
We had a community project going on for writing document-
ation. This is a large part when you have a large project. We
had a lot of contributions in the documentation area. Users
wrote a lot of documentation for eZ publish. [...] You just
can log in on our webpage and change the documentation,
it’s Wiki style. That is a point which helps building the com-
munity because then people can contribute without even
writing code. I already mentioned it: bug reporting is also one
of the best feedbacks you can get from the community, it also
involves people. All this together builds the community: the
forums, the bug reporting, the documentation and contribut-
ing code to the public extension repository.
How do you coordinate software development? Do you do
everything in your company or do you allow people to have
commit access?
Most of the developers come from eZ systems. But we have
given commit access to some developers. This doesn’t mean
they can change everything. We have a mailing list where

Appendix Page 141

you need the feature to get approved if you are an external
developer. Internally we work on a project basis. We have
[bond] release which are about every four or five months. We
write a specification what should be in that release so we
have a development process, testing and a release cycle. So
we do software development on a formal level and try to co-
ordinate this with the best of open source as well. [...] We do
allow external commits of small functionality during the de-
velopment cycle. [...]
How much code is from eZ systems compared to contribu-
tions from outside?
It would be 99.9% from eZ systems. In terms of code, almost
everything is written by eZ systems. But most of the bug re-
porting and the activities on the forum are external. If you
ask MySQL they’ll say the same. It’s very valuable. So if a
user reports a bug that is reproducible it saves us a lot of time
both finding the bug and fixing it. We can just follow the
steps and fix it. That is the biggest value you get from the
community. It’s not just the code that has value.
If I’d like to get commit access to the SVN repository how do
I have to proceed?
The first thing you need to do is to send us an email saying
who you are and what you intend to do. Then we’ll ask if you
have used eZ publish before so you need to show us you
know the system. If we feel confident about that we’ll open
an account for you. But you have to sign a contract saying all
the code you commit will be copyrighted to the company.
That is the way we do some of our business, selling profes-
sional licenses on the code. So we need the copyright of all
the code. [...]
Besides writing documentation and reporting bugs, are
there other tasks done by the community?
You can help spread the word which is part of every com-
munity. And our system is also multilingual so you can do
translations. [...] We’ve gotten about 20 translations, all of
which are contributed by the community except the Norwegi-
an and the English one. [...] Most of the community activity
happens in the forum. New members can ask questions and
advanced members can answer them and help people. [...]
You can write extensions, of course. [...]
What do you have to consider when you plan on building an
international community? What do you get from this?
What’s special about it?
First you need to speak a common language, normally that’s
English. [...] So by having an English community some
people won’t join because they don’t speak the language. [...]
To solve the problem , you could create an English, a Ger-
man, a French forum and so on. But this means some people
will just discuss in the German forum so you’ll lose those
users for the international forum. It’s a two headed horse. We
haven’t yet opened any language-specific forum other than in
English. So all communication in our community is in Eng-
lish. [...]
What else besides communication do you have to consider
regarding internationalisation?
[...] The software has to be general enough to be able to be
translated and localized into other languages like Chinese
and Arabic. This is specifically important for CMS. So the
design of the software is critical if you want to have an inter-
national community. It doesn’t help if they can discuss the
software on the forums if they can’t use it in their native lan-
guage.
How many international members do you have in your com-
munity?
What I can tell you: We have 17’000 registered users in our
forum. We have visitors from all over the world, about 150
countries every month. [...] We have paying customers in 54
countries. [...] There is only a small part of the traffic, about
4 %, coming from Norway. US commercial is the biggest.
Then we have the network, like .net. But most users come
from Europe. [...]
What’s the special thing you get from this international
community compared to a Norwegian-only one?

You’ll definitively get the feedback on use cases and set-ups
which is not normal for our customers in Norway. [...] So
you get feedback from many different cultures.
What influence does documentation have concerning com-
munity building?
[...] There exists already a book about eZ publish and more
are in the pipeline. Documentation is crucial. People take re-
sponsibility. [...]
Concerning the dual licensing model: how does it work and
what’s the influence on community building?
It’s very simple: eZ publish is GPL, so basically you can do
whatever you want as long you follow the GPL. But you can-
not make distributions, sell it, or make changes and not give
back the changes as open source. So for example if you are a
company doing system integration and you develop a com-
ponent which you want to sell then you can buy a profession-
al license and then you can make business on top of eZ pub-
lish. But it is exactly the same software, we haven’t held
back any features in the GPL version. The only difference is,
if you have a professional license you can rebrand it and re-
sell it without concerning the restrictions of the GPL. I don’t
know how it influences the community. But I know it attracts
companies who want to earn money on the solution. And
most of those companies join the community as well. That’s
what we see, there are many professionals who work with eZ
publish. This is also part of our profile, we want to make oth-
er businesses successful with their products based on eZ pub-
lish. I don’t think it hurts the community building at all. It
just gets new members into your community.
Did you ever get negative feedback about the dual license
strategy?
No, nothing. I mean we are 100% GPL. But we also have an-
other license. This means you can choose, basically. And if
you choose GPL you don’t even think about the professional
license. It is basically to give the users another option be-
cause professional users need this option to make money
from it.
Do you offer some sort of partnership for other companies?
Yes, it’s part of our business strategy. On our website we
have a partner program for different partners. We have solu-
tion partners, you might call them consultancy partners who
build and integrate websites based on eZ publish. Then we
have software partners. Typically these are the ones with the
professional software license because they create and sell
software based on eZ publish. And of course we have hosting
partners. [...]
Are there any individuals who use eZ publish?
Yes, we do have some people who use it for their personal
use. These are mostly technical people. They must not be
very technical, just being able to install and customize it. [...]
Concerning the organisational structure of the project, are
there other ways to promote community building apart from
the partnership program?
[...] One thing we’re working on now is to get user groups
started. Currently we’re starting a user group here in Oslo.
We are promoting users who want to start an eZ publish user
group. Also we offer to organize third party talks so for ex-
ample if they want somebody from eZ systems to talk at their
user group meeting we can probably arrange that. We can
also help out in promotion and hosting of their user group
website. There are some user groups on the way. [...]
The first step is to increase the number of people who know
about eZ publish. So we write articles and have them pub-
lished in different forums and magazines. Also we are active
at the different open source conferences and go to trade
shows. Basically we travel the world to meet people. [...]
How is the release management organized?
It’s just a standard development process. We make up a fea-
ture list and then we spend the next four months developing
these features. When they are implemented, then there is a
feature freeze, testing and then you release it. [...] If a third
party has a feature he wants then we’ll implement it if it’s not
completely out of the way of what we’re doing. We just have

Appendix Page 142

the main goal and that’s what we’re working on during four
or five months. [...]
What’s the influence of version numbering?
We have major releases but this happened only 3 times. One
was the total rewrite of the system. For the dot releases we
can have large changes. Like from 3.4 to 3.5 we changed the
whole administration interface. Between such version steps
you see added and improved features but from 3.4.1 to 3.4.2
you only see bug fixes and security fixes and translations.
When we get to 4.0 then we’ll have full PHP 5 support be-
cause there isn’t any at the moment.
Do you use some sort of a task list where the community
members can see what they could do?
No, we actually don’t do that. We do have a bug list where
you can come with suggestions, bugs and enhancements. We
don’t have a public task list but of course an internal one. It’s
because 99.9% of the code is written inside our company. Of
course it’s something we could do to improve the community
building. That’s an idea!
Do you have some sort of an explicit credit system where
you write down the names of external developers who
helped with the code?
Yes, we actually do that. Let’s take the documentation for ex-
ample because that is where we get most of the contributions.
If you go into the documentation and click on a page you’ll
have on the right hand side a list of all the users that have
contributed to that page. [...] In the code we have the change
log and a credits file.
What’s the influence of mentioning the names?
For example the translations page is a very visible page. You
see a map of the whole world and a list of all the translations.
And of course the names of the persons are listed so they get
credit for what they have done including a link to their web
page. I think this is important. As a contributor you feel like
my contribution is appreciated.
Do you have developers who write extensions and check
them back in somewhere?
Yes, we call it contributions because we have many different
kinds of extensions like workflows, template extensions, data
types and applications. So we have like different categories.
We have several extensions in our contributions area. There
all the extensions get their own page with comments and de-
scriptions and of course again the name of the author so he
gets the credit.
Do those developers need to purchase the professional li-
cense?
No, that’s totally GPL.
So only if you want to sell the extension you have to buy the
CMS?
Yes, most of the extensions are GPL. But we also have a
partner shop where all the partners can present their commer-
cial extensions. Typically it’s an integration with an ERP
system or other larger things.
So you give your partners an opportunity to promote their
extensions?
Yes, we offer our partners to sell their extensions over our
website. That’s our philosophy. You as a partner should be
able to make money because this is what you basically want
to do as a company. That’s what we’re trying to do. At the
same time we have the openness of the GPL version and the
community. We want to support both worlds.
How do you communicate? You said you have the confer-
ence. Do you have other physical meetings?
Yes, there is one official eZ publish conference in Norway.
And we are at many other conferences many times a year like
the PHP conference, the OSCOM and others. So we meet a
lot of people all the time. Now that we’re starting an office in
Germany we will most likely start a German conference as
well.
What’s the importance of such personal relationships?
That really makes a difference when you discuss something

in a personal forum. I mean I did this for several years and
suddenly you meet them in person - that is totally different to
discuss after you’ve met them. Of course you don’t need to
do that but it really helps.
How do you communicate digitally? What communication
channels do you use?
We mostly communicate through our forum and through
email. We also use Jabber and IRC.
Do you have different mailing lists?
We have a few mailing lists. We have a developer mailing
list, a partner mailing list - of course you need to be a partner
to be member of that. We actually try to make most of our
communication in our forum on the web page. That’s our
primary channel.
Concerning infrastructure. Do you host everything on your
own servers or do you use any platform like SourceForge or
Freshmeat for development?
We host everything ourselves. We need this because of the
freedom. Once you grow up over a certain level you just need
this freedom to control everything the way you want. [...]
There are limitations, especially if you have lots of traffic and
many downloads and so on. Still it is good as supplement or
an addition. For us, for example SourceForge just wouldn’t
work. Especially not since we’re also a professional company
and sell services. This is not allowed there.
How would you define a good and healthy community?
Basically if you can ask a question and get a good, relevant
answer then you have a good community. And also if you
can discuss future features and improvements. Another point
is to have the same people not only for one week but for sev-
eral years. That’s what we have, members who’ve been
around for three or four years.
What other properties should the community members have?
I like all the community members. Of course we have all dif-
ferent types of members in our community. Some are just
testing it for a few days and trying to install it for the first
time. Others are experienced and maybe have been there
since the start. It’s not that we would prefer one in front of
the other. [...]
Are there actions of community members you don’t like?
Well, people who are not nice. But we’ve had very little
problems with that. If for example somebody says something
bad in the forum about the software we don’t go in there and
change it. We don’t censor the forum. Basically people who
don’t follow the etiquette, for example having 1000 exclama-
tion marks in their subject. Then I think I really don’t want to
answer this message. Sometimes they just don’t know how to
behave. So that’s what we have moderators for who get rid of
all the exclamation marks. [...] We have external moderators,
too. They get their own icon and get promoted as moderators
in our forum.
Are there any entry barriers to get involved with the eZ pub-
lish community?
Of course you need to get the software running. If you want
to join, just write to the forum. Of course we also have a lot
of passive members. But it’s easy, if you want to answer
questions in the forum just go ahead. So basically you need
to have a usage for the software and then you need to create
an account on our website which requires an email address.
What leadership properties are helpful for community build-
ing?
You need to be interested in helping people out, to get them
started. We have the philosophy “If you recruit one person to
the forum he will probably recruit one or two more.” So it’s
really worth the time. [...] But it’s actually not us who are the
most active there. In a community, people like to take re-
sponsibility. [...] That’s the power of the community. [...] I
don’t think it’s really connected to a specific person at all.
[...] Of course the most active members are all native English
speakers.
What’s the influence of knowing English very well?

Appendix Page 143

That’s important because people understand more easily
what you are saying. [...] I don’t think it’s that important, you
just need a certain level. You don’t need too much language
skills to join the community at all. [...]
Why is your project so successful?
It has much to do with how we made the software but also
has something to do with the timing. [...] When we started in

1999/2000 everybody went bankrupt. That’s the time when
people look for alternative solutions, when they can’t afford a
high end solution. Open source is just a natural place to look
because the price tag is zero. [...] The price tag does not ne-
cessarily reflect the features and quality of the software. So it
has to do with two things, timing and how we made software.
I believe these are the key factors of our success. [...]

Interview with Gregor Rothfuss, Xaraya on December 1 and 7, 2004

What is your education and how did you get into Xaraya (or
PostNuke as it was called then)?
I studied business administration and computer science at the
University of Zürich. Besides this I had some websites and
was looking for a content management system for them about
in 2001. First I found PHPNuke but it wasn’t that good.
Some people improved it and founded PostNuke. At that
time I was abroad in an internship so I had time to participate
in PostNuke. I developed some stuff I needed and did bug
fixes. It quickly got very popular so I didn’t develop much
more but helped others to get into the project. I worked more
in the background talking about on what features to focus
and so on.
What made you decide for PostNuke?
It’s got many features and a good community. Before PHP-
Nuke I tried another one called PHPWebsite, I think. But this
never advanced even when I sent patches. In PostNuke there
was much more going on.
In what other open source projects do you participate?
In Apache Lenya because I also work at Wyona, the company
that initiated Lenya. And besides this and OSCOM (Open
Source Content Management Association) I don’t have much
time left. I used to work for some sort of ViewCVS once. But
I realized that it’s lots of work so I had to quit some activit-
ies.
What do you do in Xaraya at the moment?
Actually nothing. But just recently I had a look at it again
and it’s changed a lot. One thing that made me decide not to
work for Xaraya so much any more was that I believed the
project had some sort of a perfectionism problem. For almost
two years they’re working on a release 1.0 that hasn’t come
out yet. The last mile is some sort of a death walk that never
ends.
So how would you suggest to proceed?
Long ago I’ve realized that there is a “time to market” for
every product, some sort of a time window where there is a
chance to succeed. After this there will be other projects that
do similar things and bind their community to them. So when
I saw others in the community were more interested in doing
it perfectly rather than having a large community I got demo-
tivated.
Are there really things that release 1.0 still needs or is just
the version number not yet 1.0?
I mean there are always things to improve but I believe by
now it’s just hair splitting.
So why doesn’t just somebody do these last few things and
publish it?
Because this list of last few things always changes. The bar is
always put higher and higher and improvements raise the
needs for again other improvements.
So there wasn’t a feature freeze?
In a way there was but nobody wanted to stand in the way of
somebody who was doing something - like in many other
open source projects. If some people are checking in new fea-
tures all the time it’s very difficult to say stop. But these fea-
tures have to be tested again and have to be mentioned in the
documentation.
In general, what is the influence of release management on
an open source project?

Mozilla and Firefox, for example, have a very good release
management. They announce the dates of their releases and
tell the community that what’s in there on these dates will be
in the release and everything else will not. That’s the way to
avoid discussions about which features to include and which
not. This always leads to delays. And projects which seldom
do a release are not viewed as healthy because from the out-
side it seems like nothing happens.
What release cycles would you suggest for a project like
Xaraya?
Maybe every two months about 0.1 higher. Well, this might
be too much, maybe only 0.0.1 further. Doesn’t actually mat-
ter how much. Some projects have different branches. I be-
lieve it’s good to have a maintenance release maybe every
two months. Every month would be perfect but people do
this besides many other things so they don’t have time for it
continuously.
Could there also be problems if you’d release too often?
Yes, definitively. Because you wouldn’t get enough feedback
and also there’s always some overhead to do a release. So if
there is too little time between releases to develop new fea-
tures or do bug fixing the delta will be too small. Addition-
ally, it’s hard for people who use the software productively
because they would see that their release is out of date all the
time and that they might not get any support for it any more.
How about API changes? What do you have to keep in mind
before doing one?
It’s a controversial issue because there are opposing interests.
Users usually never want API changes but developers often
would like to label something as deprecated quite quickly.
For example users of Log4j even protest if something is
changed after two years.
One problem in open source projects compared to closed
source software is the difficulty to distinguish between ex-
ternal and internal API. Many projects don’t define exactly
which parts of the software others shouldn’t take for granted.
This makes it hard to do changes. Developers might think of
certain parts as internal features and assume nobody will
build upon them. But since people can see inside the code
and it’s not well defined - especially in web applications
where it’s difficult to distinguish - problems will result.
How would you suggest to prevent this?
Some projects have a policy where they define how much
time has to pass until something is called deprecated. When
these promises are kept they also get the confidence of the
users. The other step is to document with JavaDoc or PHP-
Doc which methods are internal or external. The external
methods are under the control of the policy and the others are
not. This is quite simple for APIs. With other things like
naming conventions or specific files it’s more difficult to
prevent conflicts.
So you would suggest to fix this in writing, too?
Well, writing down too much would kill everything. Nobody
would want an ISO 9001 process for this. So younger pro-
jects with not so many users usually don’t have these deprec-
ation policies. It’s more important for older ones that are
used extensively, like for example the Apache Web Server.
For years now everything is clear there. These are signs of the
maturity of a project.
Would you say in projects like the Apache Web Server there

Appendix Page 144

is no more interest to build new features or to let the com-
munity grow?
It’s interesting you are saying this because release 2.2 is just
about to come out. There won’t be such radical changes as
from version 1.3 to 2.0 but minor ones for sure. For example
the filter API which is also used for PHP will be more flex-
ible and other modules are rewritten. So you can say projects
like the Apache Web Server are very stable because they im-
plement a specification which by itself is very stable so there
won’t be big surprises. Also this project is some sort of infra-
structure software. In other types of software like book-keep-
ing or desktop publishing it’s not that well defined what the
spectrum of functionality should include. So there seems to
happen more than in projects like the Apache Web Server.
So back to Xaraya, why was it initiated?
Xaraya was created because PostNuke grew too fast and was
too successful. The developers actually got flooded by user
requests. Many users weren’t used to open source and de-
manded support from the developers.
What kind of community has evolved there?
A community can advance with a certain rate of growth only.
The problem was that there were more and more users who
demanded something but the number of people who were
really active in the project stayed the same. So the ratio got
worse. To train people is way more difficult than just to
download and install the software and ask questions. A pro-
ject which wants to be successful but isn’t prepared to handle
thousands of requests will be drowned by them. The same
would happen if all the Apache Web Server users would start
asking the developers: the project would be ruined.
What led to the separation of Xaraya from PostNuke?
[...] Most of the developers always had the vision of rewrit-
ing PHPNuke from scratch. So when this flooding of new
users culminated in rumours that the developers conspired
against the users all of the developers but one left the project.
Privately they started development of Xaraya and in addition
to the code they formed organisational structures in order not
to end as in PostNuke. E.g. Bitkeeper was introduced, a ver-
sion control system that’s also used for the development of
the Linux kernel, similar to CVS but with much better fea-
tures. We then designed our structures based on those of the
Apache Software Foundation because this is a mature organ-
isation that found out what worked and what not. So we
founded the Digital Development Foundation that keeps the
copyrights of Xaraya and should be the long term supporting
institution of the project.
What kind of foundation is this?
In the beginning we wondered if an existing foundation
would be willing to adopt our new project.
For example at PostNuke there was one guy who had re-
served the domain postnuke.com privately so he held every-
one else like hostages because he could do with the domain
what he wanted. This was one reason why we founded this
non-profit organisation, to prevent such concentration of
control in a single person. Many other open source projects
have done this, too, e.g. the GNOME Foundation or Moz-
illa.org.
What is the main advantage of such foundations?
First of all they protect the developers against lawsuits. The
basic idea is if there are any legal issues not one single de-
veloper without resources has to protect himself but since the
copyrights of the developers are transferred to the foundation
it takes care of all these things.
Secondly there are many practical advantages like e.g. if
somebody wants to sponsor the project it’s much easier to
donate money to the foundation but to one single person.
Also it’s better because you can deduct your donations from
your taxable income.
In general a foundation just gives more stability to a project.
People come and go, but the institution stays. So for example
at the moment I don’t have much interest in Xaraya anymore
but the association still stays the same and people can go on
working. Like this, a foundation reduces the risk for all parti-

cipants.
How is development organized in Xaraya?
This also changed somewhat compared to my time at Post-
Nuke. In those days if somebody came saying he wanted to
be a developer he immediately got commit access to the CVS
repository. But this became just too costly because many
people never left the initial state. They just wanted be mem-
bers of the club and weren’t willing to learn. This led to the
situation that people like me were mostly occupied training
new committers but in the end they left the project. It meant
wasting one’s time for everyone. Then we introduced the
meritocracy model, again as in the Apache Foundation. So
you had to be voted into the project. An established commit-
ter had to nominate somebody and then the others looked at
the contribution of this nominee.
What positive or negative influence can such a voting pro-
cess have on the community?
One problem in open source projects is it’s common to do
everything as open as possible, like over the mailing list and
so on. On one hand this prevents rumours like “Oh this is a
club where everything runs behind closed doors. The code is
available but all the discussions are secret and I can’t join
them.” On the other hand it can be quite difficult to live with.
For example when I’m a committer and somebody gets nom-
inated to become one and I have doubts about this person,
saying this on the public mailing list would be like hitting
this person into the face. Although my doubts might be justi-
fied, they still shouldn’t be announced all over the place. So
the voting is done mostly via a private mailing list and only
the result gets published. You don’t want to attack these per-
sons personally but still you would like to be able to express
your thoughts uninhibitedly. Someone e.g. might not yet
have contributed enough to the project or doesn’t know how
to behave in this community. If this happens internally the
decision might be to wait a little longer and this person never
knows he’s watched until it’s time.
What are the rules, how do people have to behave in the
project?
This depends on the project. Usually you don’t want to have
people on an ego trip or running amok as soon they get com-
mit access. It’s described quite well at the Apache website.
Under /dev there are a lot of descriptions. The motto is “the
community is more important than the code”. And the com-
munity is also more important than single developers no mat-
ter how much they’ve contributed to the code. Otherwise you
would have included a point of failure where one single per-
son can destroy the entire project. It even happened to the
Apache Foundation. In the Avalon project somebody mobbed
all others out of the project. This is very unhealthy.
Why is the community more important than the code?
Because only the community can support projects in the long
run. If a single person codes a lot but harms the community
by his actions it’s not a healthy project. The situation might
change and he suddenly might not be interested in the project
any longer. So it was great that he contributed so much but
it’s bad he destroyed the fertile soil for others to join. Open
source projects are not one-man shows.
What does this fertile soil have to look like to let a com-
munity grow?
Definitively important is that it doesn’t get too elite. The
mood should be “If I endeavour I can become committer one
day.” Also it’s important that criticism concentrates on ideas
and code but not on persons. This has a deterring influence.
[...] In the end the code is important.
Also you have to remember that for many people English is
not their primary language so if somebody writes something
it might be misunderstood on the other side of the planet.
Now a question about the programming language. PostNuke
and Xaraya are written in PHP, Apache Lenya is a Java
project. What are the differences between these communities
and what influence might the programming language have?
If you look at the number of projects you’ll find many more
PHP projects than Java projects. Java isn’t that easy to get

Appendix Page 145

into and see results as quickly as in PHP so it might not be
that interesting for single developers . Usually, Java projects
are used in large scale applications so you find only few Java
based message boards and so on. So there are also different
kinds of people who are interested in these different software
areas. Easy accessibility is the positive aspect of PHP and
other scripting languages. On the other hand this may be a
problem as you’ve seen in PHPNuke or PostNuke. Because
the bar is much lower people quickly think they know all
about software engineering. This leads to poor code and a
bad position of the project itself. In PHP, VisualBasic and
Perl it can be observed that the criteria of a well written soft-
ware increase continuously. For example with PHP5 the dif-
ference to Java has shrunk again so if somebody really knows
how to program PHP5 he shouldn’t use shortcuts like global
variables and all this stuff. This means VisualBasic.net is
much stricter than the old VisualBasic, they tried to move the
entire architecture. Time will show if they will be successful.
On the other hand there are efforts to integrate Java more into
the scripting world. There are examples of JSRs for this, like
Jithon or Groovy. These are implementations of scripting
languages inside the JVM (Java Virtual Machine). Or there
are some starting points in Cocoon where there is Flowscript
which is in JavaScript. I believe this grows together more and
more so the differences between the languages won’t play a
big role any longer. [...]
You were in the PostNuke community and saw all the things
that went wrong. What are the properties of a healthy com-
munity?
Well, sometimes I’m a bit puzzled about what happens on the
mailing lists even in the projects where I’m in at the moment,
like starting rumours and so on. What I’d like to say is that
all projects have these troubles from time to time. But the
more frequent such problems occur, the harder it gets to par-
ticipate in such a project and the less fun it is - which is still
a large part of the motivation for participation in an open
source project where you work in your spare time. Of course
it’s different if you get paid for your work.
In the beginning one reason why I participated in open
source projects was that I wanted to get away from large en-
terprise politics. Well, it turned out that this was somewhat
an illusion because in open source projects, too, there is lots
of politics going on. If I’d work on a project that not many
people are interested in, I wouldn’t be motivated enough. I
also want to learn something from others in an open source
project so the way how we interact must go along with this
somewhat.
What should the key players in an open source project, e.g.
release managers, do to grow a healthy community?
I believe there is not one single recipe for this. I remember I
was looking for such instructions in my own master’s thesis
but didn’t find any. I believe different open source leaders
also practice different styles. For example Linus Torvalds is
strict but he also allows lots of freedom in his community.
Some say he has a certain kind of natural laziness so he does-
n’t need to make decisions himself but lets the community
decide when it’s really necessary. He believes that a single
person just isn’t intelligent enough to see all the different fa-
cets of an issue. Others believe in very strict organisational
structures. I think it also depends on the size and the degree
of maturity of a project. For example in a project where the
structure still changes a lot a different style of leadership is
necessary. In that phase developers are needed who can code
and publish quickly for others to improve. But in a project
like the Apache Web Server such hacking around is not wel-
come because there are millions of users and stability is most
important. Negatively said this might not attract so many
people because you need talented people who aim for stabil-
ity and continuity. If you were looking for new features and
surprises all the time this wouldn’t be the right project.
What do you have to keep in mind if you want to start an
open source project today?
It’s difficult to find a niche today. Actually there are two as-
pects: On one side it’s a waste of resources if you do your
own thing although there is already something similar avail-

able. On the other side people also have an ego so they prefer
to do their own stuff - maybe just for fun, to try something
out, which is absolutely ok. As I already mentioned once it’s
much easier to become known if you initiate your own pro-
ject instead of being just one small wheel e.g. in the Linux
kernel. For somebody who just wants to try new ideas it
doesn’t matter if he joins a project in the right stage or if he
does his own stuff. If somebody wants to start a business
with his software it’s important to see some success so the
initiators are able to swim along with the wave and sell their
services.
What would be a good starting point for a new project?
What factors have to be present?
It’s always better if there is already code available instead of
just ideas. In SourceForge there are many ideas that never
catch on. If some code is already available it’s much easier to
find people because usually nobody has time to study ideas
and plans. You can’t submit patches for ideas. There are so
many other things to do, so it must be attractive. For example
I’d invest a lot of time into documentation although you have
to write it over and over again. It’s something I never really
did, but I believe you’d be astonished what influence good
documentation can have. Documentation just lowers the
entry bar and gives others the chance to collaborate. Al-
though nobody likes writing documentation it probably res-
ults in a better ‘return on investment’.
What is the right moment to publish your new open source
project and start looking for contributors?
The infrastructure must be ready - today this is no longer a
problem with SourceForge or other solutions. And there
should be some tasks available which somebody new can
start tackling. Just simple things to improve like a bug track-
er with some ideas. Otherwise, if somebody finds your pro-
ject and the only task you offer is to build a new architecture
- well, where would you start? You don’t know the project
yet.
What kind of small tasks would be optimal to get into the
project?
Some extensions where somebody can submit patches and
has a chance to start working. It’s actually a good feedback
loop: You start working with it, see some things to improve
and send a patch to the committer, who looks at it, says it’s
great and commits it to the project. So you’ll think “Oh that’s
nice!” This reassures you in the learning process.
What about publishing a task list on the website, would you
think this might help attracting people or would it rather re-
pel people?
I think it helps. Sometimes people just need a little push. Of
course you can say people could look on their own. But many
like it when they get a proposition or an option of doing
something. So if a project has some administrative guy who
likes taking care of the bug tracker already in the early
stages, it might help if he assigns issues to certain people of
whom he thinks they might be able to do them. And then
they can comment on that. Of course you can’t force any-
body to do something but you can give incentives and say he
or she fits very well for this job and would be welcome in the
project.
You said before there should be an administrator in the pro-
ject. What other roles would you define in an open source
project?
Certainly someone will be the promoter. He doesn’t code
much but he’s active in many different communities. He will
do the marketing for a project and will make sure it’s men-
tioned all over the place. Of course good coders are needed
and people who like to interact with the community and help
new users with their problems. And then people are needed
who look after the infrastructure like CVS and so on. This
might be delegated to some service provider like Source-
Forge. Also people must be found who do releases and
maybe also a project leader is needed who tries to control the
general direction of the project. Also documentation must be
done by somebody.

Appendix Page 146

What are the advantages and disadvantages of platforms
like SourceForge?
Their advantage is that they make it easy to create a new pro-
ject - but this is also a disadvantage because many immature
projects will get listed. It would be cool if they had more
structure. There are many projects that have a release called
e.g. 0.0.0.1alpha23-c1... So somebody should filter and look
if the projects are really good for something or not. Also I’d
say SourceForge isn’t that innovative any more. Their bug
tracker is quite old and so far they offer CVS only. Hopefully
they’ll offer better tools soon. Most projects that are success-
ful and finish their childhood will leave SourceForge after a
while. It also happened to PostNuke because the infrastruc-
ture didn’t bear the demand.
Is it better to build your own infrastructure or to go to such
a platform?
There are people who like doing such infrastructure things,
but many don’t. Especially in the beginning it’s practical to
go to such a platform. Often it’s underestimated what’s actu-
ally necessary to build a good infrastructure. It might mean a
severe distraction from the actual work. I rather dissuade
against it. Even if I’ve criticised SourceForge I didn’t want to
say that they don’t offer a great service. I believe such an en-
vironment is exactly the right thing for certain stages of a
project. And not all projects ever outgrow SourceForge’s ca-
pacity.
What do you think about explicit credit systems?
There are different opinions. Some believe they need this ab-
solutely. But Apache for example thinks it wouldn’t fit their
goal “The community is more important than individuals.”
So they have a credits file but it’s not said who did which
part. This practice is meant to prevent, say, a company from
accusing specific programmers for their code. I wouldn’t list
credits inside the code. Another, more marketing way is to do
weekly interviews with the developers and show them on the
project website. KDE is such a project. Generally, promotion
shouldn’t take place in the code. It might even hold off
people contributing when they see that 95% of the code
comes from one single person.
What’s the influence of extensibility of projects, e.g. an ex-
tension manager?
I believe it’s important. If you abstract it somewhat, it’s a
modularization of the code. It’s one way for a community to
grow. PHP for example is an Apache module. Just imagine
PHP had to be developed inside the Apache Web Server - un-
realistic! The same holds for the Linux kernel and its drivers
for new hardware. Modularization is good because it makes
large projects tightly structured.
What is the influence of the open source license? Which li-
censes support community building, which ones might have
a deterrent effect? Are certain licenses better for specific
kinds of projects?
I believe for smaller projects the GPL is not bad because it
would generate a bad mood if somebody just took the code
and didn’t return anything. The GPL sort of forces com-
munity building for legal reasons because people have to
give back their code changes of GPL projects. That’s differ-
ent with the Apache License. Somewhat exaggerated, GPL
communities are sort of forced communities and Apache
communities are voluntary ones. Of course this leads to other
problems. There are many companies that use Apache code
but never return anything. So in an Apache project it’s more
difficult to get the people to return their code back into the
project because you can’t use legal means. So you must find
other ways to persuade them to contribute their development
work, for example by offering them to maintain their own
fork or by convincing them of their contribution to the good
reputation of the project. But if you want larger companies to
adopt an open source project the GPL is not the right thing.
We worked with customers who explicitly didn’t allow the
use of the GPL or LGPL because they were afraid of the loss
of control over their intellectual property. If you want your
software to be used as widely as possible you have to publish
it under the Apache License.

And if you want to build a community you’d use the GPL?
A user community. I believe it’s more difficult to build a
business upon GPL code because the easiest way to make
money with open source software is to keep the changes for
yourself.
How about the phenomenon of never hearing anything from
most of the users of your software? Obviously including
some errors wouldn’t be a good way to get reactions. Do
you know other ways of how project owners can get more
useful feedback from their users?
Especially large companies don’t know how to interact with
a community. But they know how to work with a producer.
So usually it goes over a separate division that cares about
producers. I assume this is also a business opportunity for
small companies to act as an intermediate. Often these large
companies are willing to return their code but they don’t
know how to do this in the proper way. There might also be
doubts in the community about a well-known enterprise. For
example if IBM would participate in an open source project
by maybe employing developers for the project, there arises
the question about their interests and motivation for this con-
tribution. So it might be better to go via a third party to avoid
prejudices in the community concerning the large enterprise.
Can the community of the project do anything about this or
is it at the discretion of these large enterprises?
The project can create incentives for people to get in touch
with the community. It’s difficult. Commercial suppliers may
provide new features if you register. In well-known projects
like PostNuke it’s helpful for small contributing companies
to get listed in a directory as an implementation partner
showing their competence in this area. Of course it’s always
somewhat dangerous to hit the right level. A possible issue
might be how much influence a company might acquire on
the project. Maybe it’s an unsolved problem. So if I see a
question actually comes from a company I sometimes write
them a private email to get more information about their pro-
ject.
What is the difference if a project is initiated by a company
compared to initialisation by an individual developer? What
are the advantages and disadvantages?
Projects that get started by a company have a clear goal.
Their motivation is not to try out some new concepts but to
solve certain problems. For companies it is harder to get the
confidence of the community than for individuals. A com-
pany can provide resources like hiring developers to advance
a project very quickly. On the other hand there are often con-
flicts with commercial interests. The company wants to go
along this direction with the project and the community
wants to go into another one. Some projects are just too large
for individuals. For example there are several web services
projects that are sponsored by large enterprises. The idea is to
get a reference implementation which is nothing that a de-
veloper would do in spare time.
How could non-developers help an open source project?
I believe there must be the same level of incentives for them
as there is for developers. It’s necessary to have people who
are motivated to work on the documentation. It’s important
not to create a two class community and to communicate that
this kind of contribution is as important as coding. So it’s
important to value feedback and tests of the users. In this
way, a self-dynamic cycle starts letting people realize that
their contributions and skills are appreciated by the com-
munity. In a certain aspect it can be more complex to do
these things. If for example the code doesn’t compile it’s
quite clear what to do. But if the usability is bad, it’s not so
clear what should be improved. Such issues are much less
visible so people are needed who point out the problems.
What kind of people is not welcome in an open source pro-
ject? Which properties don’t help to advance a project?
If a developer puts his personal interests above those of the
community. Also just submitting ideas without showing
signs of effort to realize them isn’t valuable. The problem is
not to get more ideas but to transfer them from a planning

Appendix Page 147

phase to an implementation phase.
What are the advantages of building an international com-
munity? What are the threats of doing this?
If a software is easy to install sooner or later people on the
mailing list will demand the translation into different lan-
guages. It’s quite easy to accomplish and contributing trans-
lations is also a good opportunity for people to get into the
project. If you plan this from the beginning it’s a serious ad-
vantage. Often it’s underestimated how many people don’t
know English very well or feel too embarrassed to participate
in the mailing list. Also in certain parts of the world it’s not
common to participate in a discussion, for example in Asia.
What could be the advantage of an international com-
munity?
If the project is used in a certain geographical area only com-
petition becomes high. If the project is used internationally
the market also increases. In addition it’s really great to wake
up in the morning and receive a bunch of commit messages
because people on the other side of the planet continued to
develop the project. It also broadens the project and makes it
useful for more than one application.
How will the market of open source developers evolve? Will
there be more and more projects in the future or will there
be a consolidation to a couple of large projects?
I believe there will be an increasing number of projects but
also more and more large projects. There will be more open
source developers because the entry bar to become one is
much lower nowadays. With web applications it’s easy to
start. When GCC and emacs were written a kind of very
highly skilled developer was needed. This implies there are
different levels of skill of open source developers. Some
studies conclude that open source developers are better de-
velopers since they’re interested in the thing. It’s also easier
to employ them because one can look at the things an open
source developer has accomplished already. The more there
are, the more transparent the labour market will get. For com-
panies it’s important to hire the right people so in this way
they can see what the developers can do. It’s also an advant-
age for a developer’s CV. Everyone writes he knows Java.
But what does this actually mean? [...] I know of several
people who got a job because they are Apache committers.
This might be an extreme example but in the PHP area, too,
companies will look at what projects you were active in. It’s
quite usual to google about persons to see what they’ve done
so far.
Which kind of communication is helpful, which not?
The mailing list is the working horse. It’s quite old, widely
used and practical if the traffic is not too high. You have an
archive including a search option and everyone can read it
even if he wasn’t online. On the other hand it’s quite annoy-
ing to see that although you reached a consensus and maybe
even a decision, after a while people forget about it and the
same discussion starts all over again. Therefore tools like Wi-
kis and bug trackers help to do write down something per-
manently. Additionally real time communication like IRC is
also important. Not to allow some kind of conspiracy or to do
design decisions but to discuss with others and just hang
around with them. I believe this is important for community
building.
What are the opportunities and threats of Sprints?
The communication bandwidth is extremely high and it’s ex-
cellent for those who can participate. Often things can be
achieved during a Sprint which normally would need months
to accomplish. We already had a couple of Sprints. There are
actually two different opinions. Some say they just want to
meet and look what to do. The other direction is to prepare it

in more detail and to have somebody leading the Sprint. Usu-
ally if there is just a meeting, the people end up reading their
email in a room. For a Sprint to be successful, specific goals
are needed and not just some abstract ideas like a new archi-
tecture. The goal should be realistically achievable during the
Sprint.
What are the most efficient ways to do marketing for an
open source project?
Many projects don’t understand that they have to care about
the last mile. Other projects who understand this like Plone
are very successful. There we can learn how important it is to
invest time to provide for easy installation and some out-of-
the-box appeal. Even if a project has a great architecture but
it’s difficult to install, only a small number of people will be
interested in it.
Could you comment on how to spread the word?
Press releases are the usual way. To feel the pulse of the com-
munity it’s good to have an aggregation of all the related
Blogs like Planet OSCOM or Planet PHP. It gives an abstract
overview about a community. [...] I subscribed to several to
be informed when something big starts to happen. I don’t
want to know about every commit in these projects but want
to hear about new releases or when they found out something
interesting.
What are the opportunities and threats of such Blogs?
They might be misused by people talking about the project
behind the official communication. In larger projects it’s ne-
cessary that centralized communication takes place. [...] If
you start giving support on your own developer weblog
something must be wrong.
What about communication skills of developers?
Good question. Traditionally developers were rather autistic
and didn’t use weblogs. It’s changing now, I believe. With
weblogs you can see better what the developers are working
on and thus the reputation might improve. Also it’s a possib-
ility to enlarge the fan club. Another effect is the developers
get used to express themselves and thus the mailing list also
benefits. It helps when people learn to write better.
So every developer should have a Blog?
I believe so. Maybe some people are better in coding but at
least they should think about using a Blog.
When does a personal Blog start helping an open source
project?
Weblogs usually have a broader spectrum of readers than the
project mailing list so a wider range of people is accessed
this way. [...]
What are your “do’s” and “don’ts”?
Most of the projects don’t take marketing seriously enough.
Plone for example grew from zero to one hundred in a very
short time. They understood what was needed to attract atten-
tion, like a very good CSS and other things that are not really
related to the code. [...] Like having a nice website and
simply making your project look sexy. Of course you should-
n’t spend too much time on this but on the other hand maybe
there are just those people who really know how to do it.
Neither should you promise anything on the website and then
it doesn’t come true - no standard pictures of people shaking
hands. You should be able to download the product, it works
and it’s open source. For example Firefox is the most suc-
cessful open source project of all time. What did they do?
They removed features. Or there are many small CMS which
are downloaded frequently just because they’re better pol-
ished than others that actually can do more. So I’d suggest to
do sensible and truthful marketing.

List of Figures Page 148

List of Figures
Figure 1: A Very Abstract Picture of an Open Source Project (OSP)...............................14

List of Tables
Table 1: Process of Building Theory from Case Study Research......................................10

Table 2: Information about the Investigated Open Source Projects, Interviewees and Inter-

views..13

Table 3: Overview of the Subject-Level Promotion Matrix of Community Building.......56

Table 4: Human and Project Based Properties for Successful OSP Initialisation............105

Table 5: The Subject-Level Promotion Matrix of Community Building.........................108

Table 6: Seven Do’s and Don’ts for OSP Leaders..112

Glossary Page 149

Glossary
API Application Programming Interface
ASF Apache Software Foundation
BSD Berkeley Software Distribution
CMS Content Management System
CPS Collaboration Portal Server
CSS Cascading Style Sheet
CVS Current Version System
FOP Formatting Object Project
FSF Free Software Foundation
GNU GNU’s not Unix
GPL General Public License
GUI Graphical User Interface
HTML Hypertext Mark-up Language
HTTP Hyper Text Transfer Protocol
IRC Internet Relay Chat
IT Information Technology
JSR Java Specification Request
JVM Java Virtual Machine
KDE K Desktop Environment
LGPL Lesser General Public License
LOTS Let’s Open the Source
NDA Non Disclosure Agreement
OSCOM Open Source Content Management
OSI Open Source Initiative
OSP Open Source Project
PDF Portable Document Format
PHP PHP Hypertext Preprocessor
PLEP Plone Enhancement Process
PMC Project Management Committee
RTF Rich Text Format
SVN Subversion
UTF Unicode Transformation Format
WAP Wireless Application Protocol
WebDAV Web Distributed Authoring and Versioning
WLAN Wireless Local Area Network
WYSIWYG What you see is what you get
XML Extendible Mark-up Language
XP Extreme Programming
ZPL Zope Public License

Bibliography Page 150

Bibliography
[Bauer/Pizka 2003]

Bauer, A., Pizka, M., The Contribution of Free Software to Software Evolu-
tion, in: IEEE Computer Society (Ed.), Proceedings of the 6th International
Workshop on Principles of Software Evolution (2003), p. 170.

[Crowston et.al. 2004]
Crowston, K., Annabi, H., Howison, J., Masango, C., Towards A Portfolio of
FLOSS Project Success Measures, Syracuse University School of Information
Studies
URL: http://opensource.mit.edu/papers/crowston04towards.pdf
[requested: 2005-02-24].

[Eisenhardt 1989]
Eisenhardt, K., Building Theories from Case Study Research, in: Academy of
Management Review, Vol. 14, No. 4 (1989), p. 532-550.

[Enzer 2005]
Enzer, M., Glossary of Internet Terms
URL: http://www.matisse.net/files/glossary.html [requested: 2005-02-27]

[FOLDOC 2005]
FOLDOC – Free On-Line Dictionary Of Computing
URL: http://foldoc.doc.ic.ac.uk [requested: February 2005].

[Gale IT 2005]
Glossary of Java and Related Terms
URL: http://www.galeit.com/java_glossary.htm [requested: 2005-02-15].

[Hars/Ou 2001]
Hars, A., Ou, S., Working for free? - Motivations of Participating in Open
Source Projects, in: Proceedings of the 34th Hawaii International Conference
on System Sciences, Hawaii (2001).

[Java Programming 2005]
Sample Quiz Answers For Chapter 4
URL: http://math.hws.edu/javanotes/c4/quiz-answers.htm
[requested: 2005-02-15].

[Joppe 2005]
Joppe, M., The Research Process – Convenience Sampling
URL: http://www.ryerson.ca/~mjoppe/rp.htm
[requested: 2005-02-24].

[Koch 2004]
Koch, S., Profiling an Open Source Project Ecology and Its Programmers, in:
Electronic Markets Volume 14, Number 2 (2004), p. 77-88.

Bibliography Page 151

[Lakhani/Hippel 2003]
Lakhani, K., Hippel, E., How Open Source Software Works: “free” User-to-
User Assistance, in: Research Policy 32 (2003), p. 923–943.

[Lakhani/Wolf 2005]
Lakhani, K., Wolf, R., Why Hackers Do What They Do: Understanding Mo-
tivation Effort in Free/Open Source Software Projects, in: Perspectives on
Free and Open Source Software (2005).

[Lehman/Ramil 2001]
Lehman, M., Ramil, J. F., Rules and tools for software evolution planning and
management, in: Springer Science+Business Media B.V. (Ed.), Annals of
Software Engineering Volume 11, Number 1 (2001), p. 15-44.

[miniGuide 2005]
miniGuide to Zope Sprinting - What Zope Sprints are and how to prepare for
them
URL: http://www.zopemag.com/Guides/miniGuide_ZopeSprinting.html
[requested: 2005-02-15].

[Parnas 1972]
Parnas, D., On the Criteria To Be Used in Decomposing Systems into Mod-
ules, in: Communications of the ACM, Vol. 15, No. 12 (1972), p. 1053-1058.

[Raymond 1999]
Raymond, E., The Cathedral and the Bazaar: Musings on Linux and Open
Source from an Accidental Revolutionary, Sebastapol: O’Reilly and Associ-
ates 1999.

[Rothfuss 2002]
Rothfuss, G., A Framework for Open Source Projects, Master Thesis in Com-
puter Science, University of Zurich (2002)
URL: http://opensource.mit.edu/papers/rotfuss.pdf [requested 2005-02-14].

[Silverman 1993]
Silverman, D., Interpreting Qualitative Data: Methods for Analysing Talk,
Text and Interaction, London: SAGE Publications Ltd. 1993.

[Välimäki 2003]
Välimäki, M., Dual Licensing in Open Source Software Industry, Systemes
d’Information et Management 1/2003
URL: http://opensource.mit.edu/papers/valimaki.pdf [requested 2005-02-10].

[Van Wendel de Joode 2004]
Van Wendel de Joode, R., Managing Conflicts in Open Source Communities,
in: Electronic Markets Volume 14, Number 2 (2004), p. 104-113.

[von Krogh/Spaet/Lakhani 2003]
von Krogh, G.,Spaeth, S.,Lakhani, R., Community, joining, and specialization
in open source software innovation: a case study, in: Research Policy 32
(2003) 4, p. 1217 – 1241.

Bibliography Page 152

[Webopedia 2005]
Webopedia: Online Computer Dictionary for Computer and Internet Terms
and Definitions
URL: http://www.webopedia.com/TERM/A/API.html
[requested: 2005-02-15].

[Wikipedia 2005]
Wikipedia, The Free Encyclopedia
URL: http://en.wikipedia.org [requested: February 2005].

[Zhao/Deek 2004]
Zhao, L., Deek, F., User Collaboration in Open Source Software Develop-
ment, in: Electronic Markets Volume 14, Number 2 (2004), p. 89-103.

Declaration of Discreteness Page 153

Declaration of Discreteness

„Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als

die angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss

aus Quellen entnommen wurden, habe ich als solche kenntlich gemacht. Mir ist

bekannt, dass andernfalls der Senat gemäss dem Gesetz über die Universität zum

Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.“

Bern, 2005-03-02 Matthias Stürmer

